Band Structure Approach to RIXS

A. Yaresko and D. Kukusta¹

Max Planck Institute for Solid State Research, Stuttgart, Germany, ¹Institute for Metal Physics, Kyiv, Ukraine **a.yaresko@fkf.mpg.de**

We present formalism for calculating resonant inelastic x-ray spectra (RIXS) within the density functional band structure approach implemented recently in the PY LMTO computer code. The implementation allows studying photon momentum and polarization dependence of RIXS spectra of magnetic as well as non-magnetic compounds.

Ir L_3 RIXS spectra calculated for Na₃Ir₃O₈ and Li₃Ir₃O₈ show good agreements with experimental data and allow to identify transitions from occupied Ir *d* states to unoccupied $j_{eff}=1/2$ and e_8 states.

Band structure RIXS calculations for $SrRu_2O_6$ cannot describe contributions to experimental Ru L_3 spectra coming from collective magnon excitations or localized intraionic spin-orbital ones. On the other hand, the calculations allow to distinguish these contributions from electron-hole continuum which is reasonably well described using the band structure approach [1].

References

[1] - H. Suzuki, et al, Nature Materials 18, 563 (2019).