Magnetic Scattering and Spectroscopy at High Pressures at APS and APS-U

<u>D. Haskel</u>¹, L.S.I. Veiga^{1,2,3}, G. Fabbris¹, K. Glazyrin³, M. Etter³, C. D. Dashwood²,
J. G. Vale², D. F. McMorrow², H. Park⁴, T. Irifune⁵, S. Pascarelli⁶, T. Takayama^{7,8},
A. Kato⁸, R. Dinnebier⁷, J. Nuss⁷, H. Kono⁸, H. Takagi^{7,8}, F. Sun^{1,9}, W. G. Yang⁹,
C. A. Escanhoela¹, J. R. L. Mardegan^{1,3}, P. S. Malavi¹⁰, Y. Deng¹⁰, J. S. Schilling¹⁰,
P. P. Stavropoulos¹¹, H.-Y. Kee¹¹, M. van Veenendaal^{1,12}, N. P. Breznay¹³, A. Ruiz¹³,
A. Frano¹³, W. Bi¹, R. Birgeneau¹³, J. Analytis¹³

¹Advanced Photon Source, Argonne National Laboratory, ²London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, ³Deutsches Elektronen-Synchrotron (DESY), ⁴Physics Department, University of Illinois at Chicago, ⁵Geodynamics Research Center, Ehime University, ⁶European Synchrotron Radiation Facility, ⁷Max Planck Insitute for Solid State Research, Stuttgart, ⁸Department of Physics and Department of Advanced Materials, University of Tokyo, ⁹Center for High Pressure Science & Technology Advanced Research (HPSTAR), ¹⁰Department of Physics, Washington University, St. Louis, ¹¹Department of Physics and Center for Quantum Materials, University of Toronto, ¹²Department of Physics, Northern Illinois University, ¹³Department of Physics, University of California, Berkeley, **haskel@aps.anl.gov**

We describe current capabilities at the Advanced Photon Source for probing the evolution of magnetic order at high pressures using resonant X-ray absorption and scattering techniques in the diamond anvil cell. The complementarity of resonant magnetic scattering and x-ray magnetic circular dichroism for these studies is demonstrated with recent work on compressed beta-Li₂IrO₃, a hyperhoneycomb iridate where spin liquid and dimerized phases appear to compete for the ground state [1-4]. Opportunities in this area presented by the upcoming upgrade of the APS source (APS-U) will be discussed.

Work at Argonne was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC-02-06CH11357.

References

- [1] T. Takayama et al., Phys. Rev. Lett. 114, 077202 (2015).
- [2] N. P. Breznay et al., Phys. Rev. B (Rapid Communications) 96, 020402 (2017).
- [3] L. S. I. Veiga et al., Phys. Rev. B (Rapid Communications) 96, 140402 (2017).
- [4] L. S. I. Veiga et al., Phys. Rev. B 100, 064104 (2019).