
Fe/N/C - catalysts: probing the spin state of iron using X-ray Emission Spectroscopy

V.A. Saveleva¹, <u>K. Ebner</u>¹, L. Ni², A. Zitolo³, J. Li⁴, G. Smolentsev¹, O.V. Safonova¹, M. Nachtegaal¹, E. Marelli¹, M. Medarde¹, D. Klose⁵, U.I. Kramm², F. Jaouen⁴, T.J. Schmidt^{1,5} and J. Herranz¹

¹Paul Scherrer Insitut, ²Technische Universität Darmstadt,³Synchrotron SOLEIL, ⁴Université Montpellier, ⁵ETH Zürich, viktoriia.saveleva@psi.ch, kathrin.ebner@psi.ch

The needed improvements for a successful implementation of non-noble metal catalysts of the Fe/N/C-type in polymer electrolyte fuel cells require a fundamental understanding of their active site structure, which is currently still lacking. Specifically, the spin state and local configuration of the N-coordinated, atomically dispersed Fe-ions that are believed to constitute the active sites in these materials remain under vivid debate [1, 2]. With this motivation, non-resonant X-ray emission spectra of several catalysts prepared with a variety of synthesis methods were acquired using the von Hamos X-ray emission spectrometer at the SuperXAS beamline (Swiss Light Source) (see Fig. 1a), and their corresponding, average spin number was quantified with the help of reference compounds with a similar N-coordination environment and a well-known spin state (cf. Fig. 1b). Complemented with other spin-sensitive techniques including Mössbauer spectroscopy, these results provide unprecedented insights into the spin state of the active sites in these Fe/N/C-type catalysts both under *ex* and *in situ* conditions, as well as on the relation between these sites' electronic configuration and their contribution to the catalysts' O₂-reduction activity.

<u>Figure 1:</u> a) exemplary K_{β} -XE spectrum of an Fe/N/C catalyst fitted with two components $(K_{\beta 1,3} \text{ and } K_{\beta'})$; b) correlation between the $K_{\beta'}$ -contribution derived from the fitted XE spectra and the spin state of Fe in various reference compounds (empty symbols), alongside the interpolation for an Fe/N/C catalyst from which an average spin number of 0.9 is estimated.

References

 A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nat. Mater. 14, 937 (2015).
- U.I. Kramm, J. Herranz, N. Larouche, T.M. Arruda, M. Lefèvre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.P. Dodelet, Phys. Chem. Chem. Phys. 14, 11673 (2012).