X-ray absorption spectroscopy study of queous electrolyte solution critical properties

M. Irar 1, E. Bazarkina ${ }^{1,2}$, D. Testemale ${ }^{1}$, O. Proux ${ }^{3}$, A. Aguilar-Tapia ${ }^{1}$, I. Kieffer ${ }^{3}$, W. Del Net ${ }^{3}$, E.Lahera ${ }^{3}$, M. Rovezzi ${ }^{1}$, and J.L. Hazemann ${ }^{1 *}$
${ }^{1}$ Inst. Néel, UPR 2940 CNRS - UGA, F-38000 Grenoble, France, ${ }^{2}$ IGEM RAS, 119017 Moscow, Russia
${ }^{3}$ OSUG, UMS 832 CNRS - UGA, F-38041 Grenoble, France, mohammed.irar88@gmail.com

The goal of this study is quantify the properties of electrolytes at near-critical conditions using X-ray Absorption Spectroscopy (XAS) techniques on BM30b FAME beamline at ESRF (Grenoble, France) using hydrothermal spectroscopy cell and high-pressure autoclave [1]. Two types of measurements were performed: transmission XAS density measurements and High Energy Resolution Fluorescence Detection (HERFD) XAS measurements via crystal analyzers [2].

With heating from 25 to $500^{\circ} \mathrm{C}$ at constant pressure (280, 300, 345 and 400 bar), the absorption coefficients of chloride and bromide solutions decreases slowly until $\sim 373^{\circ} \mathrm{C}$ (similarly with pure water), but then increases up to $\sim 380^{\circ} \mathrm{C}$, and finally decreases to gaslike values at higher temperatures. These absorption measurements reflect the anomalous density behavior at near-critical T-P-x region. At the same electrolyte concentration 0.3 $\mathrm{mol} / \mathrm{kg}$ of $\mathrm{H}_{2} \mathrm{O}$, the relative density increase in this critical zone is more pronounced in order $\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$ for both bromides and chlorides. Complementary HERFD XAS measurements at Br K-edge in bromide solutions at similar T-P-x indicate that this density phenomenon is probably accompanied by structural changes (ion-pairing). Our new data complement previous synchrotron small angle X-ray scattering measurements [3] and open new perspectives for studies on electrolyte aqueous fluid properties in nearcritical state.

References

[1] - D. Testemale et al., Rev. Sci. Instrum. 76, 43905 (2005).
[2] - O. Proux et al., J. Environ. Quality (in press) (2017).
[3] - Da Silva Cadoux et al., J. Chem. Phys. 136, 044515 (2012).

