Effect of the electron-phonon coupling on phonons in iron based superconductors

Ilya Sergeev, PETRA III, Hamburg, Germany

- Fe superconductors: overview
- Study of lattice dynamics in *Ln*FeAsO
- Study of lattice dynamics in EuFe₂As₂

Fe-superconductors. Overview

Published on Web 02/23/2008

Iron-Based Layered Superconductor La[O_{1-x}F_x]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,*.† Takumi Watanabe,‡ Masahiro Hirano,†.§ and Hideo Hosono†.‡.§

Crystallographic structures of Fe-superconductors

Phase diagrams of Fe-superconductors

- superconductivity originates within Fe layer
- suppression of magnetism by doping or by pressure leads to SC
- unconventional superconductors: magnetic(?) excitations are the "glue" of the Cooper pair

Measurements of phonons in FeSCs

Theoretical phonon calculations

Electron-phonon properties of LaFeAsO

The theory predicts T_c =0.8K due to the phonon mediated Cooper pairing. Much smaller than exp. T_c = 25K

Theory predicts significant effect of the local magnetic moment on the phonon structure. It suggest to use phonons to reveal presence of the Fe magnetic moment.

Dependence of phonons on magnetism

Fe PDOS for parent 1111 compounds

Fe PDOS for LaFeAsO_{1-x}F_x at 0 and 296 K

Fe PDOS for parent / doped 1111 compounds

How to find "peak" energy

Options to find peaks:

- Fit by peak function \leftarrow ? \rightarrow peak shape unknown
- Use COM position \leftarrow ? \rightarrow depends on chosen E-range
- Our solution: search or relative shift compared to reference spectrum by least square fit. Obtain value with statistical error.

Peaks positions vs T for parent and doped conpounds

Raman scattering data with 1111 compounds

Raman scattering of NdFeAsO_{1-x}F_x Zhang et al., PRB 79 (2009) 052507

RAMAN SHIFT (cm⁻¹) 11/1 11/1 11/1 11/1 11/1 11/1 11/1

(5 214

RAMAN

RAMAN SHIFT (cm⁻¹)

336

173

T-dependence of other modes

Raman scattering data with 122 compounds

Raman scattering on BaFe₂As₂ Chauviere et al. PRB 80 (2009) 094504 Baum et al., PRB 98(2018) 075113

Gap between $B_{2g}^{(1)}$ and $B_{3g}^{(1)}$: theory : 2.8 meV exp : 1.2 meV

EuFe₂As₂. NIS measurements at room T

EuFe₂As₂ NIS on powder

Phase diagram of EuFe₂As₂

Phase diagram of EuFe_{2-x}Ni_xAs₂

NIS on EuFe₂As₂ at low and room T

T - dependence of phonons in EuFe₂As₂

T – dependence of the phonon line position and width obtained by Lorentz fit

Theory proposition for spin-dynamics

A key role for unusual spin dynamics in ferropnictides Nature Physics 5 (2009) 141

I. I. Mazin and M. D. Johannes*

- AF magnetic
- orthorhombic
- * domain walls <u>fixed</u>
 * all domains with same direction (x/y symmetry broken)

- paramagnetic
- orthorhombic

* <u>dynamic</u> domain walls * all domains with same direction (x/y symmetry broken)

- paramagnetic
- tetragonal

* <u>dynamic</u> domain and twin walls * twins at different directions (x/y symmetry conserve)

Conclusion

- There are anomalies in the T dependence of the phonon structure for FeSc of 1111 and 122 families.
- They can be related to the structural transition, spin-lattice coupling, e-ph coupling, ...???
- Characteristic E scale of anomalies is 0.1 1 meV. E –resolution of current HRM is 0.7 – 1 meV

Investigation of the T evolution of the phonon anomalies requires monochromator with 0.1 meV E resolution (spectrograph).

Other useful capability of the spectrograph is simultaneous measurements of different samples (doped / parent FeSc)

Acknowledgment

WOAK RIDGE NATIONAL LABORATORY

U. Pelzer R. Rüffer, A. Chumakov J.-P. Celse

R. P. Hermann — D. Bessas M. Angst W. Schweika

A. Möchel

M. A. McGuire A.S. Sefat B.C. Sales D.Mandrus

Thank you for your attention

