

Mineralogy and Speciation of Environmental Iron Nanoparticles with the ⁵⁷Fe Synchrotron Mössbauer Source

Christian Schröder¹, Deborah Wood¹, Kirsty Crocket², Marc Stutter³, Clare Wilson¹

¹University of Stirling, Scotland, UK ²University of Edinburgh, Scotland, UK ³James Hutton Institute, Aberdeen, Scotland, UK

Iron Nanoparticles

- \Box Nanoparticles are submicron particles (<0.1 μ m)
- Magnetic properties, high surface area, electron transfer processes, non-toxic (?), pigment
- Engineered iron nanoparticles
 - Used for treating industrial sites contaminated with chlorinated organic compounds.
 - Used in plastics, nanowires, coatings, nanofibres and textiles.
 - $\odot~$ In certain alloys and catalyst application.
 - In magnetic data storage and resonance imaging.
 - Used in tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery and in cell separation.
 - $\odot~$ As a gene carriers for gene therapy.
 - $\odot~$ As magnetic sensing probes for in vitro diagnostics.
 - As drug carriers for targeted specific drug delivery.

Environmental iron nanoparticles

TEM of magnetite nanoparticles (Sigma-Aldrich)

Iron biogeochemical cycle controls the carbon cycle

□ Iron Hypothesis (Martin, 1990):

Iron is a limiting nutrient in the ocean, which controls primary productivity and thus atmospheric CO₂ levels.

Rusty Carbon Sink:

Over 20% of organic carbon in sediments is directly bound to reactive iron phases (Lalonde et al. 2012, *Nature*).

Transport:

Iron and OC stabilize each other. High-latitude rivers with humicrich may produce significant iron flux to the ocean.

Towards a more mineralogical view ...

"It is now more important than ever that a more mineralogical view is adopted in future studies of the iron biogeochemical cycle in order to characterise colloids and nanoparticles, and define their role in aquatic environments."

Rusty Carbon Sink

Lalonde et al. (2012) Nature 483, 198-200.

Sequential Extraction

SEM

UNIVERSITY of

STIRLING

സ്സ്സ

Schröder et al. (2016)

BE THE DIFFERENCE

Sequential extraction steps

Application of Mössbauer spectroscopy to marine sediments

Biogeosciences, 15, 1243–1271, 2018 https://doi.org/10.5194/bg-15-1243-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License.

Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments

Tom Jilbert^{1,2}, Eero Asmala^{1,2,3}, Christian Schröder⁴, Rosa Tiihonen^{1,2}, Jukka-Pekka Myllykangas^{1,2}, Joonas J. Virtasalo⁵, Aarno Kotilainen⁵, Pasi Peltola⁶, Päivi Ekholm⁷, and Susanna Hietanen^{1,2}

Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE

10.1029/2018JG004649

Key Points:

 Extensive sediment resuspension may reduce reactive iron binding

The Role of Reactive Iron in the Preservation of Terrestrial Organic Carbon in Estuarine Sediments

B. Zhao^{1,2,3} (D), P. Yao^{1,2} (D), T. S. Bianchi³ (D), M. R. Shields³ (D), X. Q. Cui^{3,4} (D), X. W. Zhang^{3,4}, X. Y. Huang¹, C. Schröder⁵, J. Zhao⁶, and Z. G. Yu^{1,2} (D)

The integral role of iron in ocean biogeochemistry

Tagliabue et al. (2017) *Nature* **543**, 51-59.

Iron Hypothesis

Von der Heyden et al. (2012) Science 338, 1199-1201.

Particulate and dissolved iron pools

Tagliabue et al. (2017) Nature 543, 51-59.

Transport

Schröder et al. (2016)

Nanoparticles/colloids: isolation and concentration

0.4 μ m vacuum filtration

filtrate

retentate

5 kDa (~1 nm) Amicon Ultra-15 centrifuge

retentate

Samples ready for SMS

deborah.wood@stir.ac.uk

Size distribution of iron nanoparticles

SMS experiment: EV-310, ID18, ESRF (July 2018)

- Signal should not pass through glass
- Sample container needs to be long enough to reach optimum sample thickness
- Remove as much water as possible to maximise porosity and average density

- Samples are in suspension, so, need be frozen for SMS
- Measurements down to liquid helium temperature (4.2 K)
- Nanoparticles display superparamagnetic behaviour

(< superparamagnetic blocking temperature to gain full mineralogical information)

deborah.wood@stir.ac.uk

carbon = IC): physical size fraction <0.4 μ m>100 kDa (~10 nm)

EV-310, SMS: Lepidocrocite (γ-FeOOH)!

Conclusions

- This is work in progress
- Goal is to expand to more dilute marine samples
- Sample preparation needs to be optimized
- Currently exploring Field-Flow-Fractionation (FFF) at FZ Jülich

□ Smaller beam size from EBS upgrade potentially enables:

- Investigation of even smaller sample volumes
- Investigation of individual particles
- □ Very precise sample handling needed
- Project funded by UK Science & Technology Facilities Council?

THF DIFFFRFNCF

Thank you!

Francois Muller

 ESRF ID18: Rudolf Rüffer, Alexandr Chumakov, Dimitrios Bessas, Jan-Philip Celse, Ilya Kupenko

Marine Alliance for Science and Technology for Scotland

Scottish Alliance for Geoscience, Environment and Society

THE CARNEGIE TRUST

for the Universities of Scotland

