

Visualizing Dynamic Magnetism in Nanostructures using Electron Microscopy

Trevor P. Almeida

Materials and Condensed Matter Physics Group School of Physics and Astronomy, University of Glasgow, G12 8QQ, UK

Outline

- Motivation
- Transmission Electron Microscopy
- Magnetic Minerals
 - Electron holography
- Phase transition in FeRh thin films
 - Differential phase contrast imaging (DPC)

NRS Workshop - Grenoble

Trevor.almeida@glasgow.ac.uk

Motivation

The demand for improved functionality and reduction in size of a range modern devices has led to the rapid development of new magnetic materials

\rightarrow driving the need to visualise localised magnetism on the nanoscale

Magnetic data storage

Nanomedicine

Earth science

Transmission electron microscopy

Sample thickness < 200 nm

Resolution ~ 80 pm

Information:
➢ Morphology
➢ Chemistry
➢ Structure
➢ Magnetism
➢ Electronic
➢ Etc.

Trevor.almeida@glasgow.ac.uk

Outline

- Motivation
- Transmission Electron Microscopy
- Magnetic Minerals
 - Electron holography
- Phase transition in FeRh thin films
 - Differential phase contrast imaging (DPC)

Trevor.almeida@glasgow.ac.uk

Magnetism in Earth science

between reversals

during a reversal

Trevor.almeida@glasgow.ac.uk

To interpret palaeomagnetic data we need to understand mechanisms that:

- 1. induce magnetic remanence
- 2. alter magnetic remanence
- 1. Chemical alteration change in oxidation state

after Bulter (1982)

Trevor.almeida@glasgow.ac.uk

Electron holography

- FEI Titan Analytical
- C_s correction on condenser lens, *i.e.* probe corrected
- Operated at 300kV
- HR-STEM and chemical mapping at atomic scale
- Biprism and Lorentz lens for electron holography of magnetic fields

DTU Cen Center for Electron Nanoscopy

Electron holography

Trevor.almeida@glasgow.ac.uk

Electron holography

Phase shift:

$$\varphi(X) = C_E \int V(x,z) \, dz -$$

Mean inner potential

$$-\left(\frac{e}{h}\right)\iint B_{\perp}(x,z)\,dx\,dz$$

Magnetic induction

Total phase shift

Mean inner potential

Magnetic contribution

Trevor.almeida@glasgow.ac.uk

Electron holography

Imperial College London

Oxidation of magnetic minerals

Trevor.almeida@glasgow.ac.uk

Oxidation of magnetic minerals

Imperial College London

Oxidation of Fe_3O_4 : $2Fe_3O_4 + \frac{1}{2}O_2 \rightarrow \Upsilon - 3Fe_2O_3$

Slightly weaker ferrimagnetic

Oxidation of magnetic minerals

Oxidation of Fe_3O_4 : $2Fe_3O_4 + \frac{1}{2}O_2 \rightarrow \Upsilon - 3Fe_2O_3 \rightarrow \alpha - 3Fe_2O_3$

Canted antiferromagnetic

M

Trevor.almeida@glasgow.ac.uk

Environmental TEM

- FEI Titan E-Cell
- C_s correction on objective lens, *i.e.* image corrected
- Operated at 300kV
- Various gases, *i.e.* H₂, He and H₂0 up to 1000 Pa
- Heating specimen holder
 < 1000°C

NRS Workshop - Grenoble

Trevor.almeida@glasgow.ac.uk

Energy dispersion of 0.02eV & resolution of 0.5eV

EEL spectrum from Fe₃O₄ particles

EEL spectrum from Υ -Fe₂O₃ sample

EEL spectrum from reference α -Fe₂O₃ sample

Trevor.almeida@glasgow.ac.uk

Heated at 700°C, under 9mbar O₂ for 8 hours

Trevor.almeida@glasgow.ac.uk

Imperial College London

Almeida, T. P et al., Nature Communications, 2014

Heated at 700°C, under 9mbar O₂ for 8 hours

Trevor.almeida@glasgow.ac.uk

Imperial College London

Almeida, T. P et al., Nature Communications, 2014

Oxidised

Before oxidation

Trevor.almeida@glasgow.ac.uk

Almeida, T. P et al., Nature Communications, 2014

Environmental TEM

Trevor.almeida@glasgow.ac.uk

Almeida, T. P et al., Nature Communications, 2014

Thermomagnetic behaviour

- FEI Titan HOLO
- C_s correction on objective lens, *i.e.* image corrected
- Operated at 60 300kV
- 3 biprisms and Lorentz lens for electron holography of magnetic fields
- 11 mm pole piece gap to allow tilting to ± 75°
- Specifically designed to allow for *in situ* experiments

Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen

Thermomagnetic behaviour

Ultra stable holder during heating up to < 1000°C

TRM = total phase shift – MIP (measured at each temperature in separate experiment)

Trevor.almeida@glasgow.ac.uk

Thermomagnetic behaviour

Fe₃O₄ grain at remanence upon heating to 550°C and cooling to room temperature

Trevor.almeida@glasgow.ac.uk

Almeida, T. P et al., Science Advances, 2016

Thermomagnetic behaviour

Fe₃O₄ grain at remanence upon heating to 600°C and cooling to room temperature

Trevor.almeida@glasgow.ac.uk

Almeida, T. P et al. Geophysical Research Letters, 2016 NRS Workshop - Grenoble

Liquid cell electron holography

Combining electron holography with liquid-cell TEM holder

Trevor.almeida@glasgow.ac.uk Prozorov T. et al. Journal of Royal Society: Interface, 2017 NRS Workshop - Grenoble

Combining electron holography with liquid-cell TEM holder

Trevor.almeida@glasgow.ac.uk

Prozorov T. et al. Journal of Royal Society: Interface, 2017 NRS Workshop - Grenoble

Outline

- Motivation
- Transmission Electron Microscopy
- Magnetic Minerals
 - Electron holography
- Phase transition in FeRh thin films
 - Differential phase contrast imaging (DPC)

NRS Workshop - Grenoble

Trevor.almeida@glasgow.ac.uk

Background / motivation

Equiatomic intermetallic iron-rhodium compound (Fe₄₈Rh₅₂ to Fe₅₆Rh₄₄)

Rh: ~1 μ_Β

Zakharov A I *et al.*, *J. Exp. Theor. Phys.*, 1964 Kouvel J S *et al.*, *J. Appl. Phys.* 1962

Sample preparation

DC magnetron sputter co-deposition

- FeRh targets
- MgO and GaAs substrates
- Samples:
 - 1) FeRh on MgO
 - 2) Planar FeRh TEM samples via HF-etching

Focused Ion Beam / Scanning Electron Microscope (FIB-SEM)

• Cross-sectional and planar FeRh samples

Lightning holder with heater / biasing MEMS chip

NRS Workshop - Grenoble

Trevor.almeida@glasgow.ac.uk

Sample characterisation

- JEOL ARM200cF "MagTEM"
- C_s correction on condenser lens, *i.e.* probe corrected
- Operated at 60kV 200kV
- HR-STEM and chemical mapping at atomic scale, with EDX and EELS
- Lorentz lens and segmented / pixelated detectors for imaging of magnetisation

Kelvin Nanocharacterisation Centre

Phase transition in FeRh

HF-etched FeRh planar sample as a function of temperature **20°C** ▶ 140°C ▶ 20°C **Bright field TEM imaging** Low-angle electron diffraction 2 um 20 µrad

Trevor.almeida@glasgow.ac.uk

Differential phase contrast imaging

•STEM mode focused probe on sample, probe semi angle a.

•Beam deflected by Lorentz force.

•Segmented detector can then be used to map deflection by taking difference signals from opposite segments (quadrants or halves)

Trevor.almeida@glasgow.ac.uk

In situ imaging of FeRh transition

HF-etched FeRh planar sample as a function of temperature

Trevor.almeida@glasgow.ac.uk

NRS Workshop - Grenoble

In situ imaging of FeRh transition

Medipix pixelated detector can remove effects of diffraction contrast

Trevor.almeida@glasgow.ac.uk

Krajnak, M. et al. Ultramicroscopy, 2016

In situ imaging of FeRh transition

HF-etched FeRh examined using the **Medipix** detector at 80°C

Cross-section of 55 nm FeRh on MgO substrate

20°C → 200°C

Trevor.almeida@glasgow.ac.uk

Planar TEM lamella of FeRh on NiAl on GaAs substrate at 150°C

Trevor.almeida@glasgow.ac.uk

Trevor.almeida@glasgow.ac.uk

Trevor.almeida@glasgow.ac.uk

NRS Workshop - Grenoble

800 mV

Trevor.almeida@glasgow.ac.uk

NRS Workshop - Grenoble

900 mV

Trevor.almeida@glasgow.ac.uk

NRS Workshop - Grenoble

1 V

1 µm

Trevor.almeida@glasgow.ac.uk

NRS Workshop - Grenoble

1.1 V

Bottom contact

n films

Summary

- Specialised TEM techniques can be used to visualise nanoscale magnetism and provide fundamental insight for a range of applications
- Combining electron holography with in situ TEM and ETEM provided direct access to:
 - > The effect of oxidation on vortex-state Fe_3O_4 grains
 - Thermomagnetic behaviour of vortex states
- Lorentz techniques like Fresnel, SAES, conventional and pixelated DPC imaging allow for:
 - Visualising the dynamic nucleation and agglomeration ferromagnetic domains during transition in FeRh
 - DW and phase boundary motion can be controlled by current pulsing and Ir / Pd doping of the FeRh films

Acknowledgements

Special Thanks to:

Adrian Muxworthy

Imperial College London

Wyn Williams Lesleis Nagy

Stephen McVitie Damien McGrouther Sam McFadzean Gary Paterson

Acknowledgements

Special Thanks to:

Takeshi Kasama Thomas Hansen Jakob Wagner Jens Kling Christian Damsgaard

Technical University of Denmark

Rafal Dunin-Borkowski András Kovács Chris Boothroyd Vadim Migunov

Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen

Thank you

Trevor.almeida@glasgow.ac.uk