

IMMW21

International Magnetic Measurement Workshop

24th – 28th June 2019

High precision magnetic measurements at very high magnetic fields up to 37 T

Kevin Paillot and Steffen Krämer LNCMI Grenoble June, 24th 2019

Magnetic measurements at LNCMI - collaborators

24 MW power converter team:

R. Barbier, C. Grandclément, R. Jaymond, K. Juge, B. Vincent

DC magnet team:

C. Auternaud, F. Debray, J.-L. DeMarinis (retired), O. Jay,

M. Kamke, M. Pelloux, R. Raison, P. Sala(retired), C. Trophime,

E. Vernay

Instrumentation team:

R. Pankow, E. Yildiz

❖ NMR team:

M. Horvatić

Mechanical workshop:

T. Disparti, C. Mollard, D. Ponton, J. Spitznagel, J.-M. Tudela,

Laboratoire National des Champs Magnétiques Intenses (LNCMI)

EMFL – European Magnetic Field Laboratory

The EMFL

develops and operates world class high magnetic field facilities, to use them for excellent research by in-house and external users.

EMFL Laboratories:

- HFML Nijmegen, NL
- HLD Dresden, D
- LNCMI Grenoble/Toulouse, F

Further EMFL members:

- United Kingdom
- Poland

Information and common platform for user projects: http://www.emfl.eu

LNCMI Grenoble: Mission and In-house science

- Development
 of high magnetic field installations and
 instrumentation
- In-house research
 in high magnetic fields
- Access
 to all qualified French
 and European high field users

In-house science

- Correlated electrons : High T_c superconductors, heavy fermions,
- Organic conductors
- Quantum magnetism
- Semiconductors, graphene, graphite
- Molecular magnetism; synthesis, characterization, EPR
- Advanced magneto-optics
- Applied superconductivity: materials, conductors, devices
- Magneto-science: levitation, elaboration under magnetic field

Magnetometry at LNCMI

> Science in high magnetic fields:

Metrology – precise value of B

NMR: precise knowledge of B is mandatory for precise NMR

Spatial field distribution – precise distribution of B

NMR: resolution

Magnetization: magnetic torque, magnetic force

Levitation: magnetic force

Time variation of magnetic field – drift and spectrum of B(t)

NMR: resolution

All other techniques: noise

Development of high field magnets and power installation:

Safety and centering of magnets
 Forces

Optimal field profiles

Validation of field calculations:

Homogeneity Levitation zones

Improvement of field quality

Spatial resolution

Temporal stability

Architecture of LNCMI high field facility

example of LNCMI M10 magnet

Generation of ultra-high magnetic field - challenges

Above 23.5 T:

No commercial superconducting magnets (yet).

Resistive magnet: Put current through a coil

$$B \propto I$$

Problem 1: Heating

$$P \propto I^2 \propto B^2$$

Problem 2: Forces

$$\vec{F} \propto \vec{I} \times \vec{B} \Rightarrow F \propto B^2$$

Polyhelix and Bitter solenoids at LNCMI:

At 37 T: Current density > 30000 A/cm²

Maximum stress values: 300 MPa

Power density: 2 W/mm³

Field characterization techniques: overview

Fluxmeter measurement principle Pickup coil

Magnetic induction

$$V = -\frac{d\varphi}{dt}$$

If *B* is homogeneous on the surface

$$V = k \frac{dB}{dt}$$

After integration

$$\Delta B = B_{end} - B_{start} = \frac{1}{k} \int_{t}^{t+\Delta t} V dt$$

k must be known or calibrated, it is the pickup-coil coefficient Vs/T

Accuracy of 10 ppm Spectral bandwidth up to 10³ kHz

Magnet centering and axial field profile

This is a spatial integration over main axis of the magnet.

$$\Delta B = \frac{1}{k} \int_{z}^{z + \Delta z} V \, dz$$

Axial field profiles of LNCMI magnets – inner and outer part

Global field profile:

- Available for users on EMFL website.
- Important for modeling of magnet.
- Homogeneity area.
- Levitation zones.

Centering accuracy: 100 µm.

Field factor of the LNCMI magnets

This is a time integration at the center of the magnetic field.

+ Multiple sweep in current

 ΔI is measured with high precision **DCCT** (Direct Current-Current Transformer)

$$\Delta B = \frac{1}{k} \int_{t}^{t + \Delta t} V dt$$

+ Centered pick-up coil

 ΔB is measured

$$FF = \frac{\Delta B}{\Delta I}$$

Field factor accuracy versus NMR: 0.05 %

LNCMI fluxmeter system

Linear piezo motor field mapping system

Spatial resolution: 5 um
Centering accuracy: 100 μ m
Magnetic field accuracy versus NMR: 0.05 %

LNCMI efforts for improved field quality – homogenous B

High resolution solid state NMR: Homogeneity of 10⁻⁶ over the sample (5 mm along axis).

LNCMI two-fold approach

Design of magnets with improved homogeneity

- LNCMI polyhelix magnet technology: Enhanced homogeneity at all fields.
- ✓ Validation by axial (Pick-up coil)
 and 3d field mapping (NMR)
- Active shimming

Improvement of homogeneity of existing magnets

- Passive shimming (iron cylinder):
 Enhanced homogeneity at one chosen field.
- ✓ Validation by NMR field mapping:LNCMI: 10 ppm reached over 5 mm.

Nuclear Magnetic Resonance: precise mesure of B

Quantum effect with classical analogue

Nuclear angular moment "spin" / Nuclear magnetic moment M

 $M = \gamma I$ gyromagnetic ratio γ

Energy difference $\Delta E = h \gamma B_0$ γB_0 is Larmor frequency

Precession Larmor frequency $f = \gamma B_0$

NMR is calibration standard for magnetic field: ppm precision (1 ppm = 10^{-6}) Gyromagnetic ratio γ of ¹H in H₂O at 25°C is CODATA listed: γ = 42.57638507 MHz/T However, it requires a "somehow" homogeneous and stable field.

At 35 T Larmor frequency of protons is 1.5 GHz

How to measure field by NMR?

Record individual NMR FIDs and determine instantaneous magnetic field values by FFT (average of 100 us). Repeat experiment n times and apply statistical methods for analysis. Method sensitive to noise related to magnet (vibrations, drift).

Frequency domain: Spectrum centered at frequency $f = \gamma B$ Width: 10 ppm at 1 GHz / 23.5 T

Accuracy better than width!

Actual project: NMR correction of field factor

Deviation from nominal value

July 2018 M9 Bitter and Helix 27 Al NMR at 4.2 K at selected fields $^{27}\gamma$ = 11.1122 MHz/T

$$B_{NMR} = (1+a)B_{set} + bB_{set}^2$$

a = -0.16 % static error of field factor b = -5 x 10^{-5} T⁻¹ quadratic non-linear term

Field value at 30 T becomes 0.1 T less than indicated.

Quadratic term is property of magnet:

Thermal expansion, current distribution, hydraulic pressure?

NMR field map

3d field mapping probe available at LNCMI

Variation of sample position by guided motion along threads.

Mapping of field profile in cylidrical coordinates.

Paths:

$$B_z(z,r=0,\theta=0)$$

$$B_z(z=z_0,r,\theta=\theta_0)$$

$$B_z(z=z_0,r=r_0,\theta)$$

3d field mapping for non-axial geometry

Polyhelix magnet with enhanced homogeneity

NMR probe for 3d field mapping

Magnetic field $B_0(\mathbf{r})$ as a function of 3d spatial position was determined by measuring nuclear precession frequency $f_0: f_0(\mathbf{r}) = \gamma_n B_0(\mathbf{r})$ and the results were compared with numeric calculation:

Validation of <u>3d</u> numeric analysis

Radial gradient due to non-axial symmetric coils!

COMPARISON OF MEASURED AND COMPUTED HOMOGENEITIES

\overline{n}	F_n	F_{n1}	ϕ_{n1}
	$[\mathrm{ppm}/\mathrm{mm}^n]$	$[ppm/mm^n]$	[deg]
1	-1.48 ¹	61.7	33.8
		66.7	31.5
2	-2.24	0.1	37.8
	-2.34	-	-

¹ Computed values are displayed in **bold**.

Fig. 2. Magnetic Field Profile along z axis.

Fig. 3. Azimuthal magnetic field profile at $\rho = 8 \text{ mm}$ and z = 0 mm.

C. Trophime et al., IEEE Trans. Appl. Superconductivity, 2006

How to measure time evolution of magnetic field by NMR?

Measure field directly by NMR

Record individual NMR FIDs and determine instantaneous magnetic field values by FFT (average of 100 us)
Repeat experiment n times and apply statistical methods for analysis
Bandwidth of method: DC to 10 kHz, ppm precision, lack of spectral resolution Method sensitive to noise related to magnet (vibrations, drift).

Field properties of installation in June 2017 as seen by NMR

Specification of power supply: 20 ppm of nominal current in band from 0.1 Hz to 10 kHz.

Enhanced field stability and resolution for 20 MW magnets

NMR spin lock and Ferroshim: 10 ppm $/ \emptyset = 5$ mm

New NMR RT probe for 20 MW magnet

to cancel the field drift:

Further steps:

Active compensation of the field fluctuations Homogeneous, > 30 T magnets

Passive ferroshim:

NMR stabilization of resistive magnets – spin echo method

Spin-lock has to work in inhomogeneous field

 $G(\omega_0)$ changes sign if ω_0 is first moment of $I(\omega)$: control signal Signal enhancement by CPMG

Passive shimming of resistive magnets

permanent magnets in electromagnets

Ferromagnetic cylinder (iron):

Saturated ferromagnet ($M_{\text{sat}} \sim 2 \text{ T}$) generates its own intrinsic magnetic field B_{shim} .

Center region: B_{shim} in opposition to external field B_{ext} :

$$B_{z,\text{shim}}(z,r=0) = -\frac{M_{\text{sat}}}{2} \left[-\frac{z-l}{\sqrt{r_1^2 + (z-l)^2}} + \frac{z-l}{\sqrt{r_2^2 + (z-l)^2}} \right]_{l=-h/2}^{l=+h/2}$$

Near center:

Inhomogeneity of the external field B_{ext} will be reduced.

Optimized homogeneity

obtained at only one particular field value $B_{\rm ext}$ and with a appropriate design of the shim itself (height and thickness).

and with a precise (sub-mm) positioning of shim in field.

Magnetometry at LNCMI

> Science in high magnetic fields:

Metrology – precise value of B

NMR: precise knowledge of B is mandatory for precise NMR

Spatial field distribution – precise distribution of B

NMR: resolution

Magnetization: magnetic torque, magnetic force

Levitation: magnetic force

Time variation of magnetic field – drift and spectrum of B(t)

NMR: resolution

All other techniques: noise

Development of high field magnets and power installation:

Safety and centering of magnets
 Forces

Optimal field profiles

Validation of field calculations:

Homogeneity Levitation zones

Improvement of field quality

Spatial resolution

Temporal stability

Matter and magnetic field

Field induced phenomena (quantum effects)

Phase transitions and new states of matter:

2d electrons, finite electron systems (nanostructures), superconductivity, heavy fermions, low dimensional conductors, low dimensional magnets.

Fundamental: condensed matter physics

"Smooth B properties of matter" (classical and quantum)

Spectroscopy under variable B:

NMR, EPR, optics, neutrons, x-ray, thermodynamics and transport under B: magnetization, calorimetry, electric and heat transport

Fundamental and applied: physics, chemistry, biology, medicine

Classical electrodynamics (magnetic force)

Magnet design, magnetohydrodynamics, magnetic alignment, magnetic confinement, magnetic levitation

Fundamental and applied: soft matter, biology, plasma, energy, metallurgy

Science in high magnetic fields at LNCMI Grenoble

		Maximum Field	Temperature range
Magnetotransport	DC, AC, pressure, contactless	37 T	20 mK – 300 K
Magnetization – dHvA	Cantilever Faraday balance	37 T	20 mK – 300 K 1.2 K – 300 K
Specific heat		30 T	1.2 K – 300 K
"Thermotransport"		35 T	300 mK – 300 K
Magnetic Resonance	NMR in solid state physics High resolution NMR (chemistry) EPR (superconducting magnets)	35 T 30 T (fix) 16 T	50 mK – 300 K 300 K 1.5 K – 300 K
Ultrasound attenuation		35 T	1.5 K – 300 K
Magneto-optics	Photoluminescence, μ-PL Raman, μ-Raman Far Infrared Spectroscopy	30 T 30 T 35 T	1.5 K - 300 K 1.5 K - 300 K 1.5K - 300 K
Applied Superconductivity	Critical current Coil test in 170 mm bore size magnet	30 T 18 T	4.2 K - T _c 4.2 K
Magneto-science	Chemistry, Orientation of ferromagnets , Levitation	10 T (380 mm) 35 T (34 mm)	

NMR - what for?

Nuclear spins as monitors in matter

Many identical nuclear spins act as local "observers".

Concept of additional local magnetic field seen by nucleus B_{loc}

Standard NMR:

 $B_{\rm loc}$ proportional to B_0 , aligned and very weak, ratio of 10⁻⁶ (ppm) to 10⁻⁹ ppb

Precise magnetic field: superconducting magnets

Extreme NMR:

Additional terms in B_{loc} , sometimes not proportional and aligned.

From weak to strong, i.e. $B_{loc} > B_0$

Precise knowledge of external field B_0 is mandatory for precise NMR studies

Types of magnetic fields

Current Measurement and Regulation: DCCT

developed and optimized by CERN

DCCT = Direct Current Current Transformer

- Primary current generates magnetic field in hollow core: one conductor, up to 16500 A
- Compensation by secondary current: many turns, 1 A typically
- Detection of "zero flux" by Hall probe or ac-method
- Calibration provides precise and fast absolute current measurement:

10⁻⁶ = ppm (parts per million) range, kHz bandwidth

Magnetic field production - electromagnets

Biot Savart law:

$$\mathbf{B}(\mathbf{x}) = \frac{\mu_0}{4\pi} \int \mathbf{J}(\mathbf{x}') \times \frac{\mathbf{x} - \mathbf{x}}{\left|\mathbf{x} - \mathbf{x}'\right|^3} d^3 x'$$

Magnetic force (Lorentz force):

$$\mathbf{F} = \int \mathbf{J}(x) \times \mathbf{B}(\mathbf{x}) d^3 x$$

Magnetic energy:

$$E = \frac{1}{2\mu_0} \int \mathbf{B}^2(\mathbf{x}) d^3 x = \frac{1}{2} L I^2$$

Magnetic pressure (energy density):

$$p = \frac{\mathbf{B}^2(\mathbf{x})}{2\mu_0}$$

inductance *L* and current *I*

Power dissipation:

$$P = \int \rho(x) \mathbf{J}^2(x) d^3 x \propto \mathbf{B}^2$$

 ρ specific resistance

Magnetic field production - electromagnets

Origin of magnetic field – charge and spin

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left[\frac{3\hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \mathbf{m}) - \mathbf{m}}{|\mathbf{r}|^3} \right]$$

Dipole field: important in atomic and molecular physics.

Magnetic dipole in ${\bf m}$ external magnetic field B Magnetic torque

$$N=m\times B$$

Magnetic energy of dipole in external field

$$E = -\mathbf{m} \cdot \mathbf{B}$$

Magnetic force

$$\mathbf{F} = \nabla(\mathbf{m} \cdot \mathbf{B})$$

only present in inhomogeneous magnetic fields

Field characterization: Overview and methods

physical observable measurement technique

physical quantity

atomic property

Field characterization techniques: Fluxmeter by pick-up

Induction coil placed in magnetic field

$$\varphi = \int \mathbf{B} \cdot d\mathbf{S}$$

$$V = -\frac{d\varphi}{dt}$$

$$\varphi_{end} - \varphi_{start} = \int_{t_{start}}^{t_{end}} V \cdot dt$$

needs precise integrator

$$B_{end} - B_{start} = \frac{\varphi_{end} - \varphi_{start}}{k}$$

needs profile dependent calibration k = S for homogeneous field

Accuracy of 10 ppm

Spectral bandwidth up to 10³ kHz

Continuous sampling provides power spectrum

Field profiles of LNCMI M9 magnet

Global profile:
Important for modeling of magnet.
Definition of levitation areas.
Available for users on EMFL website.

Field profile near center: Important for positioning of user experiments. Field homogeneity In 1 cm DSV Here: $\Delta B/B = 500$ ppm

Application of axial field map: diamagnetic levitation of helium

Energy of ⁴He in presence of magnetic field.

Gravitational energy:

$$E_{grav} = \rho g z$$

Magnetic Energy:

$$E_{mag} = -\frac{1}{2\mu_0} \chi_m B(z)^2$$

$$E = E_{grav} + E_{mag} = \rho g z - \frac{1}{2\mu_0} \chi_m B^2 = \rho g \left(z - \frac{\chi_m}{2\mu_0 g \rho} B(z)^2 \right) \qquad \frac{\chi_m}{\mu_0 g \rho} = 4.824 \times 10^{-4} \text{ m T}^{-2}$$

$$\frac{\chi_m}{\mu_0 g \rho}$$
 = 4.824 x 10⁻⁴ m T⁻²

Levitation zone above threshold field near 22 T for LNCMI M9 magnet.

3d spatial field distribution

Simplest model:

LNCMI M9 14 helix axial symmetry. Principal inhomogeneity: z2 term

$$B(z,r) = B_0 + G_{z2} (z^2 - 0.5 r^2)$$

NMR and pick-up: G_{z2} up to -25 ppm/mm²

Radial centering of magnets

Mapping path along concentric circles with increasing radius. Fitting of data using simple model provides center.

No variation for perfect centering!

Radial centering of axisymmetric magnets using NMR

Bitter magnet and superconducting outsert of hybrid magnet

Bitter center at (x,y) = (-1 mm, 0 mm)

Supra center at (x,y) = (0.25 mm, 0.25 mm)

Example: NMR results during optimization period by Basis

M9 30/11/2017, Helix GR1 analog: 2 x 14410 A, Bitter GR2: 2 x 12600 A B = 32.847 T, ¹H of H₂O in GdCl₃, f₀ = 1395.250 MHz

Time record of 4 x 2000 NMR records, each taken during 20 minutes.

Normalization of field variation and subtraction of linear drift.

Analysis of data by counting of occurrences of variation values (= histogram)

Optimization and implementation of ferroshim at LNCMI

Second (smaller) region of enhanced homogeneity for spin lock placement along z-axis.

Options for radial gradient suppression.

Options for enhanced shim strength (10% more) by using Co/Fe alloy (Permendur)

Passive shimming performance at 29 T

- Effective reduction of axial and radial field inhomogeneity: $\Delta B/B \sim 20$ ppm for $\Delta z = 4$ mm Further optimization using liquid sample: $\Delta B/B \sim 10$ ppm for $\Delta z = 5$ mm
- Importance of precise (sub-mm) 3d shim and sample positioning system.