Guillaume MORARD

Institut des Sciences de la Terre

Phase transitions in laser heated diamond anvil cell: observations from in situ and ex situ analyses

Different type of phase transitions

-First order solid solid transition

-Second order solid solid transition

-Congruent melting

-Incongruent melting

Different type of phase transitions

- -First order solid solid transition
- -Second order solid solid transition
- -Congruent melting
- -Incongruent melting

Internal structure of the Earth

Information on the Earth's interior

Olivine: 60% en volume des roches du manteau supérieur

 $(Mg,Fe)_2SiO_4$

Strong relation between seismological structure of the upper mantle and its mineralogy

Frost, Elements, 2008

Transitions de phases induites par la pression

 α -olivine (Mg,Fe)₂SiO₄

Perovskite (Mg,Fe)SiO₃

B-wadsleyite (Mg,Fe)₂SiO₄

 γ -ringwoodite (Mg,Fe)₂SiO₄

Internal structure of the Earth

Melting of core materials at ICB: anchoring point for the geotherm

First order phase transition

Potential existence
of carbide
exoplanets:
Interest for SiC
compound phase
diagram under high
pressure

Phase transition by changing pressure at high temperature

Accurate phase diagram could be then established

Change in structure is related with a large change in volume

Modeling a SiC+Fe planet

Journal of Geophysical Research: Planets

Equation of State of SiC at Extreme Conditions: New Insight Into the Interior of Carbon-Rich Exoplanets

F. Miozzi¹ D, G. Morard¹ D, D. Antonangeli¹ D, A. N. Clark² D, M. Mezouar³, C. Dorn⁴ D, A. Rozel⁵ D, and G. Fiquet¹ D

Melting : congruent

• Example of iron

Anzellini et al, Science, 2013

In situ XRD study
Diffuse scattering
Reconciling ab initio
calculations, static and
dynamic compression

Energy dispersive EXAFS experimental set-up coupled with Laser-Heated Diamond Anvil Cell on ID24 beamline, ESRF

From DIAMOND synchrotron website

In situ criteria for XANES experiments

From Mazevet et al, Phys. Rev B, 2014

Change of the edge upon melting

hcp-fcc transition

In situ X-ray diffraction on ID27

Fe-5wt% Ni-12wt% S; P~67 GPa

Fe-5wt% Ni-12wt% S; P~67 GPa

In situ detection of melting in LHDAC

Fe-5wt% Ni-12wt% S; P~67 GPa

Reactions forming carbides could be clearly identified

Melting of carbon contaminated iron samples

Incongruent melting

after Buono & Walker, GCA 2011

Analysis of post-experiment samples

Sample recovered after laser heating experiment at 41 GPa

Confirmation from analysis of sample texture after laser heating

Determination of the phase diagram under high pressure

5μm

Reconstructing
phase diagrams of
iron alloys under
Earth's core
conditions

Mori et al, EPSL, 2017

Problem of chemical segregation

Fe-S alloy after melting at 30 GPa

MORB silicate after melting at 65 GPa

After Sinmyo et al, EPSL, 2019

Fast acquisition could be the key

After Boccato et al, JGR, 2017

With the EBS, flux * 100

Therefore acquisition time /100 (CdTe detector 250 Hz)

Data treatment of large amount of data ??

Thank you for your attention