Large beam XPCS

Fabian Westermeier

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Motivation

Motivation: Beam damage

- In many systems, X-rays change the sample (or at least the sample dynamics)
 - Usually a function of dose
 - D = absorbed radiation/mass

Motivation: Beam damage

- In many systems, X-rays change the sample (or at least the sample dynamics)
 - Usually a function of dose
 - $D = absorbed \ radiation/mass$
 - By using a large beam, we increase the mass...
 - Limitations:
 - Restricted to *large* uniform sample systems
 - Heterogeneous sample systems: Mean of dynamics (advantage/disadvantage)
- Coherent flux at P10-EH1: ~ 10¹¹ ph/s
 - Flux density: ~ 10^7 ph/s/µm²

Realization

- Our problem: The bigger the beam, the smaller the speckles...
- Solution: Increase distance between sample & detector

Distance ~ 21m

Realization

- Our problem: The bigger the beam, the smaller the speckles...
- Solution: Increase distance between sample & detector

Some images...

ROI, approx 200 x 200 pixel

Approx. 2000x2000 pixel

Setup characteristics

- Sample-detector distance of 21.0 m
- Accessible q-range at 8 keV photon energy: 2x10⁻⁴ 2x10⁻² Å⁻¹
- Low-beta source: Approx. 7x40 µm (sigma source size)
- Large sample area: Approx. 600 mm along beam & wide open across beam
 - Maximum load: 150 kg
- Standard sample environment:
 - Samples are placed in a DN100 cube which is fully vacuum integrated
 - Transmission & reflectivity inserts, temperature-range: -150 to 400°C
 - Nano-positioning setup based on piezo stages
 - Custom user setups:
 - Linkam temperature stage
 - High-pressure cell (University of Dortmund)

In XPCS, SNR is proportional to $\beta \cdot I$

Contrast

Contrast x intensity

At 13 keV photon energy Pixelsize = $(75 \ \mu m)^2$ [Eiger]

Some suggestions for low-dose XPCS

- Flux matters no virtual source
- Flux matters try to optimize $\beta \cdot I$
- For fast (kHz) detectors:
 - Detector pixel size will most probable stay in the range of $(50-200 \ \mu m)^2$
 - \rightarrow Maximize sample to detector distance

Thanks

- to the P10 team
 - Michael Sprung
 - Sergej Lazarev
 - Dmitry Dzhigaev
 - Daniel Weschke
- and all P10 users