

Mario Reiser Scientific Instrument MID / University of Siegen

Workshop on Coherence at ESRF-EBS, September 2019

🖬 🔜 💻 European XFEL

Nanorheology

allows for studying...

- Iocal viscoelastic and dynamical properties of the entwined micelle network,
- interaction between network and particle dynamics.

European XFEL

Cai, et al., Macromolecules 44, 7853 (2011)

Photorheological Liquids

European XFEL

Ketner, et al., J. Am. Chem. Soc. 129, 1553 (2007)

Large Beam XPCS – P10 and ID02

P10 – Experimental Hutch II

	ID10	P10	ID02
photon energy in keV	8.1	8.1	12.4
Detector	Eiger 500k (PSI)	Eiger 500k (Dectris)	Eiger 500k (PSI)
maxi rep rate (Hz)	22 000	9 000	22 000
beam size A (µm²)	10x10	75x75	30x30
detector distance R (m)	5	21	30m
pixel size (µm ²)	75x75	75x75	75x75
sample thickness (mm)	2	2	2

radiation sensitive samples			
critical dose	speckle size		
$D_c \propto rac{F}{A}$	$s \propto rac{R}{A}$		

Meisburger et al., Biophys. J. 104(1), 227 (2013)

Mario Reiser, Workshop on Coherence at ESRF-EBS, September 2019

X-Ray Photon Correlation Spectroscopy (XPCS)

Intensity auto-correlation function

$$g^{(2)}(\tau) = \frac{\langle I(t)I(t+\tau)\rangle_{\text{pix,t}}}{\langle I(t)\rangle_{\text{pix,t}}^2} = 1 + \beta_0 |g^{(1)}(\tau)|^2$$

× •

European XFEL

Lee et al., Opt. Express 21, 24647 (2013)

Brownian Diffusion: 100nm SiO2 Spheres in Glycerol-Water Mixture

Mario Reiser, Workshop on Coherence at ESRF-EBS, September 2019

7

Single Time Series for XPCS Analysis

Ferroelectric materials: Gorfman et al., Proc. Natl. Acad. Sci. U.S.A. 29, 6680 (2018)

Building Correlation Functions

Single correlation functions measured with 40µs exposure time

Building Correlation Functions

Single correlation functions measured with 40µs exposure time

Average of 90 correlation functions measured at different positions on the sample

Building Correlation Functions

1,150

1.125

Single correlation functions measured with $40\mu s$ exposure time

Combination of

40, 110µs and

10, 500*ms*

1.100 (μ) 2 1.075 1.050 1.025 1.000 1.150 1.125 measurements with 1.100 (1.100 (1.100) (1.100) 1.050 1.025 1.000 10^{-3} 10⁻¹ 10¹

Average of 90 correlation functions measured at different positions on the sample

European XFEL

τ(s)

11

Building Correlation Functions

Single correlation functions measured with 40µs exposure time

Combination of measurements with 40, 110µs and 10, 500ms

Dynamics from microseconds to hundreds of seconds

📕 European XFEL

Model

Model: Double Exponential Relaxation

Dynamical Regimes

influence of microscopic entanglement strands on dynamics

Transition Between Dynamical Regimes

Mario Reiser, Workshop on Coherence at ESRF-EBS, September 2019

Complex Dynamics Studied with XPCS at ESRF-EBS

21

Acknowledgement

Anders Madsen Jörg Hallmann Johannes Möller **Ulrike Bösenberg** Karina Kazarian

Luigi Cristofolini Davide Orsi

Eric Stellamanns Fabian Westermeier Michael Sprung

Christian Gutt Anna-Lena Becker Hendrik Rahmann Jan Verwohlt

Federico Zontone Yuriy Chushkin Theyencheri Narayanan Thomas Zinn

22

Mario Reiser, Workshop on Coherence at ESRF-EBS, September 2019

Thank You

