

Foivos Perakis Physics Department

Temporal correlations in liquid water using x-rays: from femtoseconds to seconds

Workshop on Coherence at ESRF-EBS Grenoble, 10 September 2019

Outline

Glassy water Diffusive dynamics of amorphous ices

Supercooled water

ultrafast cage effects

Why study water?

The two-liquid hypothesis

 ρ (LDA)=0.94 g/cm³ ρ (HDA)=1.17 g/cm³ Close to hexagonal ice

The two-liquid hypothesis

Poole et al. Nature 360,1992

A. Nilsson & L. Pettersson Nature Comm. **6,** 8998 (2015)

Experimental Evidence: Widom line 229K

K.H. Kim et al. Science **358**, 1589 (2017)

What about the dynamics?

Inelastic UV Scattering

Dynamic structure factor $S(Q,\omega)$

2D-IR Spectroscopy

OH stretch frequency fluctuations

C. Masciovecchio, S. C. Santucci, A. Gessini, S. Di Fonzo, G. Ruocco, and F. Sette PRL 92, 255507 (2004) F. Perakis, et al Chem. Rev. 116, 7590–7607 (2016)

Coherence and dynamics

Speckles and Dynamics

Speckle Pattern

Beyond averages: reflects exact arrangements

X-ray Photon Correlation Spectroscopy

Dynamics by changes of the speckle pattern

M. Sutton et al., *Nature* 352, 608-610 (1991)

O. G. Shpyrko et al Nature 447, 68 (2007)

X-ray Photon Correlation Spectroscopy

Intensity Autocorrelation Function

$$g_2(Q,\delta t) = \frac{1}{N} \langle I(Q,t) \cdot I(Q,t+\delta t) \rangle$$

Intermediate scattering function

$$F(Q,t) = \frac{1}{N} \langle \sum_{i=1}^{N} \sum_{j=1}^{N} e^{i \mathbf{Q} \cdot \left[\mathbf{r}_{i}(t) - \mathbf{r}_{j}(0) \right]} \rangle$$

Changes of the Speckle pattern

Madsen A., Fluerasu A., Ruta B. (2016) Structural Dynamics of Materials Probed by XPCS **Giordano and Ruta** Nature Comm. 7, 10344 (2016)

Foivos Perakis two-time correlation functions

$$g_2(Q,\delta t) = \frac{1}{N} \langle I(Q,t) \cdot I(Q,t+\delta t) \rangle \quad \Leftrightarrow \quad C(Q,t_1,t_2) = \frac{1}{N} \langle I(Q,t_1)I(Q,t_2) \rangle$$

phase separation in sodium borosilicate glass

Order-disorder phase transition in Cu₃Au

Pump and probe of atomic motion in oxide glasses

Malik et al PRL 81, 832-5835 (1998) **Fluerasu et al** PRL 94, 055501 (2005) **Ruta et al.** Sc. Rep. 7, 3962 (2017)

Foivos Perakis two-time correlation functions

Diffusive dynamics during the high-to-low density transition in amorphous ice

Synchrotron Experiments

The two-liquid hypothesis

Katrin Amann-Winkel Thomas Loerting

HDA

LDA

Poole et al. Nature 360,1992

K. Amann-Winkel et al. PNAS, 1311718110 (2013)

High and low density amorphous ice

[1] E.F. Burton and W.F. Oliver, *Proc. R. Soc. A*, 153, 1935
[2] P. Brüggeller, E. Mayer, *Nature*, 288, 1980
[3] O. Mishima, L.D. Calvert, E. Whalley, *Nature*, 310, 1984

K. Amann-Winkel et al. PNAS, 1311718110 (2013)

High energy diffraction, Beamline 6-ID-D

photon energy E = 100 keV

High energy diffraction experiments

Static Structure factor

High to low density transition

F. Perakis, K. Amman-Winkel et al. PNAS 114, 8193 (2017)

High energy diffraction experiments

F. Perakis, K. Amman-Winkel et al. PNAS 114, 8193 (2017)

PETRA III, HAMBURG

P10 Coherence Applications Beamline

The experimental setup

8.4 keV, Si(333), PILATUS 300k, Lamda, 3x3um focus

F. Perakis, K. Amman-Winkel et al. PNAS 114, 8193 (2017)

X-ray Photon Correlation Spectroscopy

X-ray Photon Correlation Spectroscopy

Nanoscale dynamics of water near the glass transition

F. Perakis, K. Amman-Winkel et al. PNAS 114, 8193 (2017)

Flux dependence

- Always measure XRD before and after the XPCS measurement
- To minimise beam-induced heating we investigate the flux dependence

Performed measurements in the non-perturbative regime

Probing Structure and Dynamics

F. Perakis, K. Amman-Winkel et al. PNAS 114, 8193 (2017)

Temperature and Q-dependence

Fast component appearing at 110 K

Diffusive motion ~100nm

Dynamical heterogeneities

Normalized variance

- Transition to more homogeneous dynamics T>115K
- Non-ergodic to ergodic regime
- Missing very fast dynamics (contrast decreases)

Take-home message I:

- "Slow" and "fast" components: Glass transition
- High and low density coexistence
- low-density diffusive dynamics

F. Perakis, K. Amman-Winkel et al. PNAS 114, 8193 (2017)

Coherent X-rays reveal the influence of cage effects on ultrafast water dynamics

FEL EXPERIMENTS, XCS@LCLS

X-ray Speckle Visibility Spectroscopy

Exposure Time-dependence

polystyrene nanospheres in glycerol

Temperature-dependence

latex nanospheres in glycerol

I. Inoue et al Optics Express 20, 26878 (2012) C. DeCaro et al. J. Synchrotron Rad. 20, 332–338 (2013)

Speckle contrast at XFELs

C. Gutt et al. PRL 108, 024801 (2012) S. Lee et al. Opt. Exp. 21, 24647 (2013) F. Lehmkühler et al. Sci. Rep. 4, 5234 (2014) Sci. Rep. 5, 17193 (2015)

X-ray Speckle Visibility Spectroscopy

The challenges

Water is a weak scatterer

in the hard X-ray range (8.2keV)

Contrast is low in WAXS atomic lengthscales ($Q = 1.9 Å^{-1}$)

X-ray Studies of Water, A. Nilsson and F. Perakis, Synchrotron Light Sources and Free-Electron Lasers, Springer (2019)

Negative binomial distribution

NB = Poisson * Gamma

$$P(k,\bar{k},M) = \frac{\Gamma(k+M)}{\Gamma(M)\Gamma(k+1)} \left(1 + \frac{M}{\bar{k}}\right)^{-k} \left(1 + \frac{\bar{k}}{M}\right)^{-M}$$

$$P(1) \equiv P(k = 1, \bar{k}, M) = M \left(1 + \frac{M}{\bar{k}}\right)^{-1} \left(1 + \frac{\bar{k}}{M}\right)^{-M}$$

$$P(2) \equiv P(k = 2, \bar{k}, M) = \frac{M(M+1)}{2} \left(1 + \frac{M}{\bar{k}}\right)^{-2} \left(1 + \frac{\bar{k}}{M}\right)^{-M}$$

$$R_{12} \equiv \frac{P(2)}{P(1)} = \cdots \Leftrightarrow$$

Foivos Perakis

$$\beta \equiv \frac{1}{M} = \frac{2 \cdot R_{12} - \bar{k}}{\bar{k}(1 - 2 \cdot R_{12})}$$

Hruszkewycz et al, RPL 1109, 85502 (2012) Verwohlt et al PRL 120, 168001 (2018)

Photon counts and contrast

1.5 ·10⁻² photons/pixel

TJ Lane Felix Contrast 0.069 Lehmkühler

F. Perakis et al Nature Comm. 9, 1917 (2018)

The experiment in a nutshell

Varying pulse duration

Varying temperature

Flux dependence

Speckle contrast Structure factor position of the 1 diffraction peak as a function of photon density 2.15 0.14 $\textbf{0.069} \pm \textbf{0.002}$ 2.10 0.12 2.05 0.10 $Q \left({{\rm \AA}^{ - 1}} \right)$ 2.00 0.08 Θ 1.95 0.06 1.90 0.04 T = 296 K 1.85 0.02 T = 328 K 0.00 1.80 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020 10-2 10⁻³ \bar{k} (photons/pixel/shot) \bar{k} (photons/pixel/shot)

Molecular Simulations

Gaia Camisasca

Pure Ballistic motion

- Thermal fluctuations
- Maxwell-Botzmann distribution

Molecular dynamics (MD)

TIP4P/2005 : rigid planar model, 4-site MB/pol : flexible, polarizable, many-body

TIP4P/2005: J. L. F. Abascal and C. Vega J. Chem. Phys. **123**, 234505 (2005)

MB/pol: Reddy et al ... F. Paesani J. Chem. Phys. **145**, 194504 (2016)

Comparison with experiment

XSVS: Siegert relation

$$\beta(Q,\delta t) = 2 \cdot \beta_0 \int_0^{\delta t} \left(1 - \frac{t}{\delta t}\right) |F(Q,t)|^2 \frac{dt}{\delta t}$$

Dixon & Durian PRL 90, 184302 (2003)

F. Perakis et al Nature Comm. 9, 1917 (2018)

Take-home message II:

- Probing the transition from pure ballistic motion to diffusion
- cage effects: increased occupation time within the first solvation shell due to O-O oscillations after 25 fs.

F. Perakis et al Nature Comm. 9, 1917 (2018)

Outlook: towards the future

DLSR: classes of experiments

Sensitive

- radiation sensitive samples
- Large focus/ high energy
- Large sample-det. distance

Fast

- Sub-millisecond dynamics
- Fast detectors/shutters

Atomic

- atomic lengthscales
- Highly monochromatic beams

J. Möller et al J Synchr. Rad. 6, 794-803 (2019) Vodnala et al Phys. Rev. E 97, 020601 (2018) **Giordano and Ruta** Nat. Commun. 7, 10344 (2016)

Acknowledgements

A. NilssonK. Amann-WinkelA. SpähG. CamisascaH. Pathak

I. Tsironi L. Pettersson D. Schlesinger M. Segad

TJ Lane S. Song A. Robert D. Zhu

F. Lehmkühler G. Gruebel A. Jain W. Roseker

J. Sellberg