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Real data reconstruction

Figure: Reconstruction of experimental data from the TOMCAT beamline at SLS: rheology study of liquid
foams. Data size: (N, N✓, Nz ) = (2016, 300 ⇥ 130, 1800), reconstruction size:
(N, N, Nz , Nt ) = (2016, 2016, 1800, 130). Left panel shows a 3D reconstruction by FBP from the angular
interval ✓ 2 [94⇡, 95⇡) linearly connected to the time period t 2 [94↵⇡, 95↵⇡) where the foam starts
continuously moving in vertical direction. Fast foam motion correspond to regions (a) and (b), whereas the foam
is almost static in the region (c).
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orienting the crystal [19]. This number can be increased by
exploiting symmetries of the crystal lattice, setting the x-ray en-
ergy to specific values, and positioning the crystal so that several
reflections sit simultaneously on the Ewald sphere. Figure 1(a)
illustrates the generation of eight deflected beams by the {113}-
family of Laue reflections of a face-centered cubic crystal, such as
diamond or silicon. The incoming beam direction, defined by its
momentum vector ~k0, is set parallel to a high-symmetry axis,
corresponding to the (001)-reflection direction in the depicted
example. All reflections related by a rotation around the symmetry
axis, e.g., corresponding to {113}-family, form identical angles
π∕2 − θ with respect to the incoming beam direction and share
the same reflection plane spacing d . The Laue condition for the
wavelength λ,

λ ! 2d sin"θ#, (1)

is then fulfilled simultaneously by all eight planes, yielding eight
diffracted beams with a deflection angle of 2θ. For a silicon crys-
tal, the photon energy that sets the {113} planes in the Laue con-
dition is 12.56 keV (see Supplement 1). Figure 1(b) provides
experimental evidence for the simultaneous generation of the
eight beams described above. The experiment was performed

at the Materials Science beamline [20] of the Swiss Light
Source (SLS), using a silicon crystal with the aforementioned
arrangement. Figure 1(c) shows the arrangement of the beam
splitter crystal and a sample positioned downstream the crystal
in the overlap region of all eight diffracted beams. To ensure
the simultaneous illumination of a sample of size t by all the
beams, the incoming beam diameter S and maximum distance
from the sample center to the closest face of the crystal L are con-
strained (see Supplement 1).

XMPI is a technique that can be applied to the near-field and
far-field imaging regimes. In this work, we demonstrate that the
different projections of an object are retrieved for both regimes
with resolutions around 17 μm and 80 nm, respectively.

The near-field imaging experiment was carried out at the
TOMCAT beamline at SLS [21]. Propagation-based phase-
contrast imaging was performed (see Supplement 1) using the
setup depicted in Fig. 2(a). The collimated beam at 12.56 keV
illuminated a Si(001) splitter mounted on a triple-axis goniom-
eter. Due to geometrical limitations of the experimental setup, the
crystal could not be oriented to simultaneously hit the eight re-
flections of the Si {113}-family [Fig. 1(a)], but only the Si(131)
and the Si(111) reflections, with deflections angles of 35.1° and
18.2°, respectively. A moth placed directly downstream from the
splitter was illuminated simultaneously by the three beams. Three
near-field images, shown in Figs. 2(b)–2(d), were recorded by
translating the detector to intercept each of the three beams.
The forward-direction image exhibits lower noise because of the
higher intensity. The image resolution of such images was esti-
mated to be about 17 μmbased on analyzing the edge profiles. The
rotation axes that relate the direct-beam projection [Fig. 2(b)] with
the two deflected beam projections [Figs. 2(c) and 2(d)] form the
expected angle of 11.9°. The features of the moth head observed in

(a)

(b) (c)

Fig. 1. Beam splitter. (a) Illustration of the eight reflections in recip-
rocal space of the {113}-family of a face-centered cubic crystal. The
dotted-dashed curve represents the intersection between the Ewald
sphere and the l ! 1 plane. The sample is positioned downstream from
the crystal to be illuminated by all the generated beams. (b) Image of the
direct beam and of the eight diffracted beams on a phosphor screen, gen-
erated from a single incoming beam traversing a 100 μm thick Si(001)
crystal perpendicular to the (001) surface. (c) Representation of the re-
quirement of the maximum distance L from the crystal beam splitter
surface to the sample such that the latter is illuminated by both the direct
and the diffracted beams. The relevant parameters are the diameter of the
direct beam S, the transverse extension of the sample t, and the deflection
angle 2θ of the diffracted beam.

(a)

(b) (c) (d)

Fig. 2. Near-field imaging experiment. (a) Experimental setup used at
the TOMCAT beamline of the Swiss Light Source. (b)–(d) Phase con-
trast images in the near-field regime recorded with the area detector
placed in the horizontal plane at deflection angles of (b) 0° (direct beam
direction), (c) 18.2° [diffracted beam from the Si(111) reflection], and
(d) 35.1° [diffracted beam for the Si(311) reflection]. The detection plane
was perpendicular to the direct beam. The rotation axes and rotation
directions with respect to the projection in (a) are marked with dashed
red lines and black arrows. The scale bar in (b) corresponds to 500 μm,
and the two red dashed lines illustrate the angle between the rotation
axes.
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Tomographic microscopy at synchrotron
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Hierarchical imaging of biological samples

24. 
September 
2019

Rajmund.Mokso@maxiv.lu.se4

10nm

100μm mGy

MGy 100μm

0.5m 0.1 s

1 h

Pre-clinical imaging and therapy 
(in vivo, medium resolution >30 um, low dose, large beam , large FOV) 

Nano-scale imaging beamlines
(fixed tissue, resolution ~ 100nm, high dose, small samples ~100um)

Down to a micrometer resolution
(rarely in vivo, high resolution ~ 1um, higher dose, small FOV)

The whole organ
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Pathogenesis of Alzheimer’s plaques

Phase contrast CT Two-photon microscopy
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and after cell vitrification, in cryo-conditions (Fig.  2c) 
to assure that no cell rearrangement was induced by vit-
rification (Additional file  3: Figure  S2). Reconstructed 
cryo-SXT volumes had a resolution of ~60  nm, suffi-
cient to visualise mitochondrial cristae (Fig. 2d, e, arrow-
heads). We also observed other cellular components 
such as intermediate filaments, actin bundles (Fig.  2f, 
grey) or plasma membrane (Fig. 2d, f, brown), as well as 
organelles such as the nucleus, including nucleolus and 
chromatin condensations (Fig.  2d, f; Additional file  4: 
Figure S3).

Cryo-soft X-ray tomograms of SPION-incubated 
MCF-7 cells showed an increase in high-absorption clus-
ters at longer incubation times, which correlated with the 

LysoTracker Red signal (Fig. 2; Additional files 2 and 4: 
Figures  S1D–F and S3). Three-dimensional reconstruc-
tion of whole cells showed high-absorption clusters con-
centrated mainly near the nucleus, although they were 
also found scattered throughout the cytoplasm; they 
were never found inside the nucleus (Fig. 2f; Additional 
file 4: Figure S3). These results coincide with the increase 
in SPION-loaded endocytic vesicles reported using clas-
sical 2D techniques [10, 12]. Volumetric representa-
tion of cells showed mitochondrial exclusion to the cell 
periphery caused by high-absorption cluster accumula-
tion near the nucleus (Fig.  2f, yellow; Additional file  5: 
Movie 2). The high-absorption clusters inside cells had a 
non-homogeneous internal substructure, consistent with 

Fig. 2 Fluorescent and cryo-SXT correlative workflow. a In vivo differential interference contrast (DIC) image of MCF-7 cells cultured on Au-HZBII 
grid and incubated 24 h with SPION (0.25 mg ml−1). Bar 200 μm. b In vivo fluorescent image from the area in the yellow square in a. Bar 20 μm. 
Nucleus, blue (DAPI), acidic vesicles, red (LysoTracker Red). c Cryo-epifluorescent image (red channel) from the area in the yellow square in b. Bar 
5 μm. d Cryo-SXT plane from the area in the yellow square in c. N, nucleus. Bar 2 μm. e Cryo-SXT plane showing ultrastructural details of the cell. 
Arrowheads indicate mitochondrial cristae. Bar 500 nm. f Volumetric representation of the tomogram in d. High-absorption vesicles (red), seg-
mented applying a threshold adapted to the volume containing the highest densities, are condensed near the nucleus (blue), displacing the 
mitochondrial network (yellow). Grey filaments, orange plasma membrane. Dataset acquired at HZB-BESSYII



Phase contrast in free space propagation
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Free space phase imaging
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Linear scenarios for near-field phase retrieval:

Transport of Intensity Equation (Small propagation distance)

Contrast Transfer Function (Weak scattering and absorption object)
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Phase (contrast) tomography
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Motivation to utilize phase in full-field imaging 
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Contrast enhancement

• Improve CNR == less noisy images  == reliably image interpretation / segmentation

• reduce dose enables high resolution in-situ and in vivo imaging

• enhance acquisition speed to avoid motion blur due to sample movement



Handling coherence in full-field imaging
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How do we practically handle interference of coherent 
beams in full-field imaging?

• Retrieve the phase and attenuation deploying CTF or TIE 
based algorithms -> used mainly in nanoimaging with 
projection microscope

• Filter the projections with the Paganin filter to obtain the 
projected density -> very successful at beamlines because 
it is robust and simple

• Use the edge enhanced image -> often suitable for visual 
analysis

• We simply remove fringes to get clear attenuation image 
(e.g. decoherer on beamlines / Bronikov aided correction 
for lab sources )
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Starting with low coherence

Lab microtomograph
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NanoMAX
The nanofocus beamline
(users in  2017)

SoftiMAX
Soft X-rays
(in construction -> 2020)
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DanMAX
Imaging & diffraction
(in construction -> 2020)

2016 2017 2018 2019 2020



@Division of Solid Mechanics, LTH, Lund

Life Sciences

Fracture healing in bone

Bone formation

Bone implants

Brain tumours
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Eyes
Collab.  A. Kelber (LU)Collab. H. Isaksson (LTH)

e.g., collab. P. Johansson (MTH)

Heart structure
Collab. R Stephenson (AU)

Giraffe heart



Little coherence: lab sources
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Edge enhancement  vs.  Paganin filtering for Versa 520

F. Mattsson, Master thesis, LTH

Exposure time = 1s, pixel size = 500 nm
60 kV (+filter) -> Eeffective ~ 30 keV

leaf

Profile plot

Endge enhanced

Paganin filter
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Medium coherence

Standard imaging beamline
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PRINCIPLES DENSITY TIME SPACE

flight muscles of a flyfast tomography
30% of detector dynamic range

absorption & edgephase map

• Refractive index n
δ >> β

n = 1 - δ + i
β

Phase tomography Phase contrast  tomography
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Image quality vs. radiation damage
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M. Kitchen, CT dose reduction factors in the thousands using X-ray phase contrast, Sci. Rep. 7 (2017) 
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time was set in order to ignore spontaneous heartbeats that would occur earlier than the required delay time of 
the acquisition hardware. Only the coupling of all these aspects and the fact that ultra-short single-exposure times 
of a few milliseconds were employed finally led to motion-less CT reconstructions (Fig. 1c).

Technical validation. To fully evaluate the performance of the proposed imaging technique, we compared 
tomographic slices acquired with two different optics with pixel sizes of 2.9 × 2.9 µm2 and 1.1 × 1.1 µm2, respec-
tively. With these two settings the scanned partial volumes were 5.8 × 5.8 × 2.7 mm3 and 2.2 × 2.2 × 2.2 mm3 in 
size, respectively. Tomographic acquisitions of selected lung regions were acquired first in vivo in anesthetized 
animals and shortly thereafter post mortem, both of them under constant breath-holds induced by the ventila-
tor. As detailed in the Methods section, each post mortem scan was achieved after administering an overdose of 
pentobarbital to the anesthetized animal at the end of an in vivo scan. The direct comparisons (Fig. 2) yielded 
somewhat differing results between the two optics (magnifications). For the 2.9 µm-pixel-size optics the obtained 
image quality for both the in vivo and post mortem samples produced comparable results at a single-projection 
exposure time of 3 ms. For the 1.1 µm-pixel-size optics, however, the difference was quite significant due to the 
presence of heart-induced motion artifacts that were present in the lung during the in vivo scans. It shall be noted 
that for the 1.1 µm-pixel-size optics, due to the higher magnification (hence lower photon efficiency), a higher 
single-projection exposure time of 5 ms had to be used in order to produce comparable signal-to-noise ratios as 
in the case of the 2.9 µm-pixel-size optics.

From these results, we concluded that there was no appreciable improvement by using the higher magni-
fication for the in vivo scanning mode. To further test this hypothesis, we randomly selected several alveolar 
regions in images acquired with both of the magnifications to qualitatively investigate their informative content 
in terms of visible biological features. There was indeed no improvement (Fig. 3), neither in signal-to-noise ratio 
nor in spatial resolution, when the higher magnifying optics were used. This result is significant in the sense that 
it appears to be directly linked to the required temporal resolution of the imaging systems. Namely, it indicates 
that even shorter X-ray exposure times than the ones that were applied here (5 ms) would be necessary and to be 
combined with accurate triggering within the cardiac cycle. To achieve this under the current imaging settings 
would necessitate a significant increase (4–5x) of the X-ray photon flux.

in vivo post mortem

▪ Pixel size:
  2.9 x 2.9 µm2

▪ Number of
  projections:
  478

▪ Single-projection
  exposure time:
  3 ms

▪ Pixel size:
  1.1 x 1.1 µm2

▪ Number of
  projections:
  429

▪ Single-projection
  exposure time:
  5 ms

Figure 2. Comparison of the image quality of in vivo and post mortem tomographic slices of lungs at two 
different magnifications. The red arrows exemplify the difference in lung tissue thickness, which was observed 
between the in vivo and post mortem case. The post mortem tomographic slice was acquired at 30 cmH2O, while 
all other images were acquired at 15 cmH2O.

Lung alveoli microstructure in vivo

17

In vivo tomographic microscopy
Lovric et al. Sci. Rep. 2017

Chapter 6. Quantitative analysis of intact lungs at the alveolar and acinar scale

bution we have saddle-surfaces (free septal edges), sharp edges (alveolar mouths), spherical
shapes and so on. If the distribution becomes sharper around zero, it means that there is a
trend in all these surfaces towards a more flatter shape, which obviously can only be the case
for alveoli.

We also addressed the question whether a curvature analysis is enough to uniquely identify
alveolar surfaces within the lung. For this, the four regions of the ISD-plot (Fig. 6.5) are
visualized in 3D in Fig. 6.13(a). As can be seen, the red surfaces (corresponding to “Region
1”) are indeed shown to lie on alveolar surfaces, however there are small surface areas that
have different shape (non-elliptical) in between. This corresponds, in fact, to previous findings
in lung anatomy indicating that alveoli hardly have a pure spherical/elliptical shape [15].
However, we can make use of a simple assumption by applying the normal cycle algorithm for
calculating curvatures. Namely if we set a big geodesic radius at each surface vertex, small
areas lying in the middle of the alveoli which do not have a strict spherical surface, will be
interpreted as spherical due to their surrounding. This fact is illustrated in Fig. 6.14: first (on
the left) side the curvature are mimicked to be calculated with small geodesic radii; then, once
the geodesic radius increases, small deviations in the alveolar surface area are still recognized
as being part of an alveolus. The result is plotted in Fig. 6.13(b) and in Fig. 6.13(c) the 2D
slice is shown.

Finally we discuss shortly the very small difference between 20cmH2O and 30 cmH2O. The
change in the ISD plot in Fig. 6.11(c) suggests that, despite the higher pressure a significant
amount of elliptical surfaces is reduced. This could be interpreted as a possible over-stretching
of lung tissue, previously only obtained through simulations [216] and could be explained as
follows: at physiological lung pressures the lung maintains an elastic distension pattern; how-
ever, if the pressure is increased significantly the overstretching could cause significant devi-
ations to the ideal shape of the alveoli. We close the discussion by showing such an example
obtained with a different dataset, depicted in Fig. 6.15

420 µm

(a)

420 µm

(b)

Region VI

Region III

Region II

Region I

(c)

Figure 6.13. 3D visualization of the four regions from the ISD-plot with different geodesic
radius: (a) depicts the calculation with radius R = 3.5 and (b) with R = 15. In (c) a 2D slice
is shown from (b).
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• Hierarchical morphology of secondary particles in Li-rich cathode materials.
• Develop at longer charging time 50cycle >10cycle

Y. Yang, Y. Liu, et al., Adv. Energy Mater. (2019)

LiNi type particles in new cathode material
70 nm

650 nm



Quantification of Heterogeneous Degradation in Li-ion Batteries
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• A depth-dependent degree of particle fracturing.
• More damaged close to the separator than the current collector.

Y. Yang, Y. Liu, et al., Adv. Energy Mater. (2019)

2.3. Image data processing

Each projection image collected during the tomography scans
was corrected with the respective dark and flat-field image. Single-
image phase and intensity extraction was also applied to all pro-
jection images with the aid of the Paganin phase-retrieval algo-
rithm [34]; 3D reconstruction of the data was achieved using the
gridrec algorithm [35].

To ease image analysis and computation of the resulting large
image stacks, whilst maintaining significant image feature quality,
the reconstructed images were converted from 16-bit to 8-bit TIFF

format. 3D visualization of reconstructed tomograms were pro-
cessed using Avizo 9.0 (FEI Visualization Group, France) and ImageJ
[36]. The dense Si particles were separated from the electrode
conductive matrix and electrolyte/pore phase based on their dif-
ference in greyscale value via threshold segmentation in the Avizo
segmentation editor. Particle volume distribution measurements
were obtained by performing 3D connected component analysis of
the segmented Si particles. Volume specific surface area calcula-
tions were performed in Avizo, and were based on a marching
cubes algorithm [37] with surface mesh smoothing and refinement.
The mean greyscale intensity within the cropped regions of

Fig. 4. X-ray tomogram sections of selected SiMPs showing varying initial responses on Si particles to lithiation-induced stresses. The particle in (a) gradually lithiates, with the
formation of a low attenuating LixSiy phase on the particle surface which grows inward. (b.c) 3D renderings of the particle in (a) at 0 min and 1314 min respectively. The histograms
in (d) are the result of an intensity line scan [orange line in tomogram section at 0 min and 1314 min in (a)] showing the phase transformation at the particle boundary. The yellow,
green and grey sections in the histograms highlight the crystalline Si, LixSiy and surrounding carbon phases respectively. The two adjacent particles in (e) respond differently to
lithiation stresses: both particles experience micro-cracking which eventually leads to the formation of complex crack microstructure in the top particle and fracturing in the
bottom particle. Pink arrows highlight the gradual formation of the low attenuating LixSiy phase. (f,g) 3D renderings of the particle in (e) at 0 min and 1314 min respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

O.O. Taiwo et al. / Journal of Power Sources 342 (2017) 904e912908

In situ degradation of Si 
electrode / TOMCAT, SLS 

growth of surface pitting (highlighted by the 
red arrows) in the lithium counter electrode

Taiwo, et al., J. Power Sources. 342 (2017)



Development in phase retrieval algorithms
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Working towards a more robust phasing tool

Unsupervised solution for in-line holography
phase retrieval using Bayesian inference
FLORIN FUS,1,2,* YANG YANG,1 ALEXANDRA PACUREANU,1 SYLVAIN
BOHIC,1,2 AND PETER CLOETENS1

1ESRF, ID16A beamline, The European Synchrotron, 38000 Grenoble, France
2Universite Grenoble Alpes, EA-7442 Rayonnement Synchrotron et Recherche Medicale, Grenoble, France
*florin.fus@gmail.com

Abstract: In propagation based phase contrast imaging, intensity patterns are recorded on a x-ray
detector at one or multiple propagation distances, called in-line holograms. They form the input of
an inversion algorithm that aims at retrieving the phase shift induced by the object. The problem
of phase retrieval in in-line holography is an ill-posed inverse problem. Consequently an adequate
solution requires some form of regularization with the most commonly applied being the classical
Tikhonov regularization. While generally satisfying this method su�ers from a few issues such
as the choice of the regularization parameter. Here, we o�er an alternative to the established
method by applying the principles of Bayesian inference. We construct an iterative optimization
algorithm capable of both retrieving the unknown phase and determining a multi-dimensional
regularization parameter. In the end, we highlight the advantages of the introduced algorithm,
chief among them being the unsupervised determination of the regularization parameter(s). The
proposed approach is tested on both simulated and experimental data and is found to provide
robust solutions, with improved response to typical issues like low frequency noise and the
twin-image problem.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the hard x-ray regime the investigation of low absorbing materials such as biological samples is
di�cult using x-ray absorption imaging. This limitation can be overcome through phase imaging
techniques with highly intense and coherent synchrotron beams [1]. In in-line holography [2–4],
phase contrast is the result of the wavefield propagation through free space after interaction with
the object. Combined with a nanofocus [5], the experimental setup allows for the acquisition of
several di�raction patterns on a fixed detector as the sample is moved at multiple distances from
the focus. A quantitative relation exists between the recorded images and the complex index
of refraction characterizing the object. This dependency is described in our paper by detailing
the image formation process and the "Contrast Transfer Function" model that approximates it.
Based on this model, inversion algorithms aiming at retrieving the phase shift can be deduced.
However, due to poor transfer of information from the object plane to the detector plane for
some spatial frequencies, phase retrieval is an ill-posed inverse problem that requires adequate
regularization. We describe in the following the standard Tikhonov regularization techniques
most commonly in use for phase retrieval as well as their limitations and drawbacks. Consequently
we propose an alternative inversion method based on Bayesian inference that addresses some of
the imperfections of the classical approach. The main advantage of the proposed algorithm is
the unsupervised determination of the regularization parameter. Finally we proceed to test and
compare the standard and Bayesian approaches on both simulated and experimental datasets.
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a)
0.05

-0.235 µm

b)

Fig. 6. Phase map of a red blood cell obtained through a) standard regularization and b)
Bayesian inference.

Fig. 7. Line profiles (along the yellow lines of Fig. 6) through the retrieved phase maps
obtained by classical regularization (blue) vs. Bayesian inference (green).
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1.2. Phase retrieval through classical regularization

We have set in the previous section the formulation of the direct (CTF) model in phase imaging
as a linear, algebraic relation between the observations (recorded di�raction patterns) and the
unknowns (complex index of refraction) in Fourier space. We also underlined the di�culties raised
by the ill-posed inverse problem and the necessity of applying regularization to obtain a satisfying
solution to phase retrieval. Here we proceed to introduce the results of classical regularization
and their application to the inverse problem of phase retrieval. The rising shortcomings of this
method are highlighted and addressed later in this paper.

We consider inverse problems that, like phase retrieval, can be formulated as a linear and
algebraic relation y = Hx + ✏ , between the known output data y and the unknown input x.
H represents the system matrix describing the model, the physical relation between the input
and output datasets; ✏ stands for the noise a�ecting the measurements. In phase retrieval y

is equivalent to the collection of recorded images in Fourier space ĨDk (f), while x stands for
the unknown phase �̃(f) and/or attenuation B̃(f), again in reciprocal space. The elements of
matrix H are defined by the coe�cients of the CTF model chosen to better represent our a priori
information on the imaged object.

There are several basic methods to solve the inverse problem, i.e. to infer on the unknown
quantity x. Most of them generally o�er poor estimates x̂ because of the unrealistic hypotheses
they rely on. Direct inversion is based on the assumption that the matrix H is invertible leading
to the simple solution: x̂ = H

�1
y. Even if the matrix H is invertible, it might still su�er from

ill-conditioning. A small conditioning number of the matrix of a linear system makes it so
that small variations in the input translate into large variations of the output. Consequently,
small errors in measurements (recorded images) translate into large errors in the retrieval of the
unknown quantities (phase, attenuation).

The basic solution for a realistic hypothesis that accounts for noise errors and a non-square
matrix H is the least squares (LS) estimate. It is based on the minimization of the Euclidian
distance between the observations y and model simulations Hx:

x̂ = arg min
x

ky � Hxk2 = arg min
x

JLS(x), (15)

where JLS designates the least squares criterion. Given the problem is convex, the solution can
be obtained by solving

@JLS(x)
@x

= 0 , �2H
⇤(y � Hx) = 0 , x̂ = [H⇤

H]�1
H

⇤
y (16)

where H
⇤ denotes the conjugate transpose of H. This solution is still very sensitive to noise

depending on the conditioning number of matrix H
⇤
H that needs to be inverted. In such situations

least squares estimation requires regularization. The regularization theory aims to overcome the
ill-posedness of inverse problems. As introduced by Tikhonov [16], the common approach is to
construct a compound criterion that adds a penalization term to the standard least squares one:

J(x) = ky � Hxk2 + �R�(x, x0), (17)

where � is a distance in the unknown space, �R is called the regularization parameter and x0
represents an a priori estimation of the solution. While the least squares term ky�Hxk2 attempts
to match the observations y to the model simulations Hx, the regularization term �R�(x, x0) acts
as a constraint that makes the solution less sensitive to the inherent noise in the measurements. It
is also meant to bring the solution closer to available a priori information as described by x0 and
the choice of distance �. The regularization parameter �R acts as a weight to the penalization
term and balances between the relevance attributed to the a priori information as compared to
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Finally any recorded image is basically the wave intensity ID at a certain propagation distance D:

ID(rT ) = |uD(rT )|2 , ĨD(f) =
π

ũD(⌘) ũ⇤D(⌘ � f) d⌘ (8)

The last result makes it obvious that the recorded di�raction patterns represent an entangled,
convoluted mixture of the phase and attenuation coe�cients of the wave in the object plane. To
avoid the computational di�culties related to the convolution operator the inversion algorithms
make use of the Fourier transforms of the recorded images ĨD to retrieve the phase and/or the
absorption components. Reconstructing the entire refractive index requires the limitation of the
problem to a simpler (though farther from the truth) mathematical expression of the di�raction
patterns, that permits the numerical retrieval of both the phase and attenuation images. This
begins with the important result of Guigay [8]:

ĨD(f) =
π

T
✓
rT � �Df

2

◆
T⇤

✓
rT +

�Df

2

◆
exp{�i2⇡rT f} drT (9)

Additionally, it employs several hypothesis on the physical properties of the object in order
to arrive to a linear relation between the Fourier transform of the di�raction patterns and the
Fourier transform of the unknown phase and attenuation. Linear approximations based on the
"Transport of intensity equation" (TIE) exist and are in general use [9, 10]. However they are
valid approximations only for small propagation distances. Contrast due to phase shift becomes
more significant as the propagation distance increases which means that phase imaging is more
sensitive in a regime that TIE fails to correctly approximate [11]. Instead we make use of the
"Contrast transfer function" (CTF) method [4, 8, 12, 13] that builds on the reduction of relation
(3) to a linear expression:

T(rT ) ⇡ 1 � B(rT ) + i�(rT ) (10)

This is valid under the assumptions of low absorption, B(rT ) ⌧ 1 (often true for soft biological
tissue), and slowly varying phase, |�(rT ) � �(rT + �Df)| ⌧ 1 (again true in cell imaging, where
recorded images usually have a sparse gradient). Combining the last two equations one can
derive the formulation of a basic direct model in phase retrieval called the CTF model:

ĨD(f) = �(f) � 2 cos
⇣
⇡�D|f|2

⌘
B̃(f) + 2 sin

⇣
⇡�D|f|2

⌘
�̃(f), (11)

Further simplification of this model can be achieved by assuming either a non-absorbing, pure
phase object [12], B(x) = 0:

ĨD(f) = �(f) + 2 sin
⇣
⇡�D|f|2

⌘
�̃(f), (12)

or a homogeneous object [14,15] with a known ratio between its phase and attenuation components,
�/�:

ĨD(f) = �(f) +

2 sin

⇣
⇡�D|f|2

⌘
+ 2
�

�
cos

⇣
⇡�D|f|2

⌘�
�̃(f) (13)

An extension of the CTF model, called the Mixed Approach [13], was developed for the treatment
of more strongly absorbing samples starting with the hypothesis of a slowly varying attenuation
A(rT + �Df) ⇡ A(rT ) + �DfrA(rT ), where A(rT ) = exp{�B(rT )}:

ĨD(f) = Ĩ0(f) + 2 sin
⇣
⇡�D|f|2

⌘
 ̃(f) + �D

2⇡
cos

⇣
⇡�D|f|2

⌘
F{r( r ln I0)}, (14)

where  (rT ) = I0(rT ) �(rT ). A drawback to this approach is the requirement to know (record)
I0(rT ), the attenuation image.
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We report on a new contrast-transfer-function (CTF)
phase-retrieval method based on the alternating direction
method of multipliers (ADMMs), which allows us to exploit
any compressed sensing regularization scheme reflecting the
sparsity of the investigated object. The proposed iterative
algorithm retrieves accurate phase maps from highly noisy
single-distance projection microscopy data and is character-
ized by a stable convergence, not bounded to the prior
knowledge of the object support or to the initialization
strategy. Experiments on simulated and real datasets show
that ADMM-CTF yields reconstructions with a substantial
lower amount of artifacts and enhanced signal-to-noise ra-
tio compared to the standard analytical inversion. © 2017
Optical Society of America

OCIS codes: (110.7440) X-ray imaging; (180.4243) Near-field micros-
copy; (180.7460) X-ray microscopy; (090.0090) Holography;
(100.5070) Phase retrieval.
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A current challenge in x-ray microscopy is performing high-
resolution nondestructive imaging of radiosensitive specimens
such as cells and bacteria. Hard x-ray synchrotron-based phase-
contrast techniques are suited to address this problem [1].
Phase-contrast methods [2,3] exploit elastic interactions that
do not deposit dose and provide enough sensitivity to discrimi-
nate different soft tissues. In the hard x-ray regime, the elastic
component of the refractive index for soft tissues results three
orders of magnitude bigger than the inelastic component which
is at the origin of the standard x-ray absorption contrast.
Resolutions down to tens of nanometers are achieved thanks
to the high coherence and brilliance of third generation
synchrotron sources [4,5].

Projection microscopy (PM) [6], also known as inline
holography, offers a better signal-to-noise ratio (SNR) com-
pared to other free-propagation phase-contrast techniques,
e.g., coherent diffraction imaging [7]. PM records magnified
holographic intensity patterns and retrieve the complex phase
information by means of a phase retrieval algorithm. It requires

a small x-ray source, which can also be secondary [8]. The sam-
ple, positioned at a distance z1 from the source, is irradiated
with a coherent divergent beam, and the intensity of the
Fresnel diffraction pattern (or hologram) is measured at a
distance z2 from the sample, as depicted in Fig. 1. The distan-
ces z1 and z2 are chosen such that the defocusing distance z !
z1z2∕"z1 # z2$is sufficient to provide a measurable near-field
diffraction pattern [9]. The phase map of the sample can be
retrieved from the hologram by means of nonlinear iterative
algorithms [10,11] that require knowledge of the object sup-
port and have no guaranteed convergence. Analytical inversion
algorithms stem either from the linearization with respect to the
propagation distance, as the transport-of-intensity equation
(TIE) approaches [12], or from the linearization with respect
to the sample transmissivity, leading to the contrast-transfer-
function (CTF) method [13]. The so-called mixed approach
[14] applies to slow varying samples and beyond the small
distance limit. From a physical point of view, the interaction
between the beam and small soft tissue samples is well approxi-
mated through linearization, making CTF the optimal ap-
proach to retrieve the phase map of the sample. Due to the
missing frequencies characterizing the transfer function,
CTF cannot retrieve a quantitative solution from a single holo-
gram, unless the case of a pure-phase or one-material object
[13] is considered. To overcome this limitation and ensure
an overall non-zero transfer function, CTF requires the acquis-
ition of holograms at different distances z1 [15,16], increasing
the dose delivered to the sample. CTF reconstructions also

z1 z2

Fig. 1. Projection microscopy setup. The sample is illuminated at a
distance z1 from the source point, and a Fresnel holographic pattern is
recorded at a distance z2 from the sample.
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where φ̄ is the average phase of the object and Δφ is the relative phase shift due to the Gaussian
scatterer. In principle, φ̄ and Δφ are complex valued. In this model the relative phase is given
by

Δφ(x,y) = φmaxe−
(x2+y2)

2σ2 , (2)

where σ is the Gaussian width or standard deviation and is related to the size of our feature,
φmax = 2π/λ (n− n0)t0 is the maximum phase shift acquired by the wave front after crossing
the scatterer, λ is the wavelength, n is the refractive index of the Gaussian scatterer, n0 is
the refractive index of the background (e.g. water), and t0 is the maximum thickness of the
scatterer. Within this article, we restrict the attention to weak pure phase objects. Biological
material at photon energies between 2 and 20 keV is a prominent example, being the real part
of the refraction index n small but orders of magnitude larger than its imaginary part. The
parameter Δδ ≡ n− n0, at the energies we are studying, fulfills Δδ ≪ 1, leading to a weak-
phase approximation φmax ≪ 1, which allows us to expand the exponential for the Δφ term in
Eq. (1).

In the following, we are going to discuss the circumstances under which nanoscale features
can be imaged with PM and CDI methods. As a first step, we quantify the X-ray intensities
diffracted by a single Gaussian feature (Eq. (2)) and measured with a pixel detector, using
the weak-phase approximation. We calculate the SNR for both imaging techniques assuming
Poissonian noise.

The parameters for the PM setup are shown in Fig 1(a). The beam with fluence Φ, emerging
from a source of size fw, illuminates the sample uniformly over a field of view FOVPM. The
defocusing distance is z = (z1z2)/(z1 + z2) [21] and the magnification is M = (z1 + z2)/z1.
We use demagnified coordinates (x,y) = (xd,yd)/M to specify positions on the detector plane,
corresponding to the physical coordinates (xd,yd). The X-ray intensity can be expressed by the
sum of the non-scattered illumination (I0) plus the intensity containing the scatterer interaction
(Isig)

I(x,y;z) = I0 + Isig(x,y;z) . (3)

In the limit of Poisson noise statics and using the weak-phase approximation, the SNR for PM
is given by (see for details [appendixA]Appendix A).

SNRPM(x,y;z) ≡
Isig(x,y;z)
√

I(x,y;z)
≈

Isig(x,y;z)
√

I0
(4)

≈ 2
√

NSω|A|e
− x2+y2

2σ2 Re(A)
∣

∣

∣

∣

sin
(

φA −
x2 + y2

2σ2 Im(A)
)
∣

∣

∣

∣

,

where
A =

1
1+ j 1

2πNF

= |A|e jφA , (5)

NF = σ2/λ z is the Fresnel number,ω = (ps/σ)2/π is related to the ratio between the sampling
size (ps) and the Gaussian feature width, and NS is the total number of scattered photons

NS =ΦσS =Φ

+∞
∫∫

−∞

|1− t(x,y)|2dxdy =Φπσ2|φmax|2 , (6)

where σS is the total scattering cross section, as described in [4].
For CDI as depicted in Fig. 1(b), we illuminate with a fluence Φ a sample over a field of

view FOVCDI. We will assume for the rest of the paper that our object covers an area smaller
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than half of the illuminated area by the FOVCDI. In case that our object is bigger than the
illuminating beam, we would require a mask to fulfill the compact support condition [19]. In
this scenario, the FOVCDI can be reinterpreted as

√
2× L, where L is the biggest dimension

of the mask. Positions on the detector plane, located at a distance z downstream, are given in
terms of reciprocal space coordinates (qx,qy) = 2π/(λ z)(xd,yd). The SNR for CDI away from
the direct beam (qx ≠ 0, qy ≠ 0) is given by (see for details [appendixA]Appendix A)

SNRCDI(qx,qy) =
√

I(qx,qy) (7)

=
√

NS
2
√
πσ

FOVCDI
e−

σ2(q2x+q2y )
2

where I(qx,qy) is the total intensity on the detector.
From Eqs. (4) and (7) it is clear that for both techniques the SNRs are proportional to

√
NS.

As a consequence, to compare both methods, it is crucial to understand how efficiently both
techniques handle the scattered photons. We proceed by defining, for both imaging approaches,
an effective SNR level which we will use later as imaging requirement to predict if a Gaussian
feature embedded in a larger object can be recovered inside the retrieved overall image. In the
NF ≪ 1 approximation, we require to detect the oscillation amplitude in Eq. (4). Thus we define

SNRPM
eff ≡ 2

√

NSω|A|≃ 2
√

NS
4√
π
β

2σ
FOVPM

, (8)

where β = ps/fw and we have assumed a diffraction limited source (λ z = πFOVPMfw/4).
For CDI, we require to have a significant SNR over the area given by qmax =

√

q2
x + q2

y = π/σ

with the sampling given by the FOVCDI (Δq = 2π/FOVCDI)

SNRCDI
eff ≡

√

NS
2
√
πσ

FOVCDI

2π
πq2

max

∫ qmax

0
e−

σ2q2
2 qdq

≈
√

NS
2σ

FOVCDI
. (9)

In the case that our feature is not isolated and it is embedded in a larger object, which scatters
isotropically and more than our feature, we can reduce our effective signal-to-noise criterion
by a factor 2, as our feature signal is dominated by the interference term [22]. We have already
included this factor 2 in Eq. (9) and for the rest of the paper we will use this factor as this
is generally the case for small features inside biological samples. In case the interference is
negligible, such as for example when the feature is isolated and there are not other significant
scatterers, one should divide Eq. (9) by this factor 2. The reader should notice that the CDI
requirement derived in Eq. (9) reduces to Eq. (4) in [4] for the special case where the feature of
interest is half of the FOVCDI, i.e., our feature is isolated or we use a tight support around the
feature [22].

As imaging criterion we propose
SNReff ≥ 5 , (10)

as suggested by the Rose criterion [23], the implications of using a 3σ criterion are described
in [appendixB]Appendix B. We consider for example a feature of 20 nm (σ = 10 nm) in an
object covering a 0.5× 0.5 µm2 area, using a perfect coherent illumination with 1012 photons
per image at an energy of 4 keV. In order to achieve the desired resolution with PM, we require
fw to be smaller or equal to the feature size (20 nm). Assuming a Gaussian beam distribution
with fw = 10 nm at 4 keV, the beam waist at a distance of z1 ∼ 12.6 µm defines the FOVPM =
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than half of the illuminated area by the FOVCDI. In case that our object is bigger than the
illuminating beam, we would require a mask to fulfill the compact support condition [19]. In
this scenario, the FOVCDI can be reinterpreted as
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of the mask. Positions on the detector plane, located at a distance z downstream, are given in
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where I(qx,qy) is the total intensity on the detector.
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In the case that our feature is not isolated and it is embedded in a larger object, which scatters
isotropically and more than our feature, we can reduce our effective signal-to-noise criterion
by a factor 2, as our feature signal is dominated by the interference term [22]. We have already
included this factor 2 in Eq. (9) and for the rest of the paper we will use this factor as this
is generally the case for small features inside biological samples. In case the interference is
negligible, such as for example when the feature is isolated and there are not other significant
scatterers, one should divide Eq. (9) by this factor 2. The reader should notice that the CDI
requirement derived in Eq. (9) reduces to Eq. (4) in [4] for the special case where the feature of
interest is half of the FOVCDI, i.e., our feature is isolated or we use a tight support around the
feature [22].

As imaging criterion we propose
SNReff ≥ 5 , (10)

as suggested by the Rose criterion [23], the implications of using a 3σ criterion are described
in [appendixB]Appendix B. We consider for example a feature of 20 nm (σ = 10 nm) in an
object covering a 0.5× 0.5 µm2 area, using a perfect coherent illumination with 1012 photons
per image at an energy of 4 keV. In order to achieve the desired resolution with PM, we require
fw to be smaller or equal to the feature size (20 nm). Assuming a Gaussian beam distribution
with fw = 10 nm at 4 keV, the beam waist at a distance of z1 ∼ 12.6 µm defines the FOVPM =
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space methods, respectively.
PM imaging techniques require a small X-ray source [7], which may be a secondary fo-

cus [8], and were recently employed at synchrotron sources [9] achieving sub-100nm spatial
resolution [10]. As illustrated in Fig. 1(a), the sample is placed at a small distance z1 down-
stream the source. The detector is positioned at a distance z2 further downstream to record a
magnified Fresnel diffraction pattern, which forms according to Gabor’s holographic princi-
ple [11]. With a single diffraction pattern, the phase retrieval schemes are applicable only in
special cases, for example for pure-phase objects [12, 13], and the retrieved phase generally
is not reproduced quantitatively. A quantitative phase reconstruction, with a single diffraction
pattern, can be achieved in some special cases, such as, single-material objects [14]. In gen-
eral, this becomes possible if a number of patterns (typically 3 to 5) are acquired at different
source-to-sample distances z1 [15–18], which ensures non-zero values of the contrast transfer
function [15]. Another option is to use iterative approaches which impose constraints in the
sample and detector planes [18]. The spatial resolution of the reconstructed phase map is in
principle limited by the source size.

z2

(a)

z1

(b)
z

Fig. 1. (a) PM setup, z1 is the source to sample distance (∼ 10 µm), and z2 is the sample to
detector distance (∼ 1 m). (b) CDI setup, z is the distance from sample to detector.

As an alternative imaging technique, we use CDI with plane wave illumination, typically
achieved by focusing the beam at the sample position with a transversal size larger than the sam-
ple extension. A Fraunhofer diffraction pattern is detected in the far field, as shown in Fig. 1(b).
The resolution is in principle given by the largest angle at which the intensity signal can be
measured. Quantitative reconstruction of sample transmission amplitudes and phases from the
measured intensity can be achieved by means of iterative transform algorithms (ITA) [6, 19],
which rely on imposing additional constraints to the sample, for example a compact support.

The paper is organized as follows: in the next section we develop our signal-to-noise (SNR)
criterion, based on Gaussian scatterers, which allows us to predict whether a feature of a given
size and scattering contrast, placed inside a larger object can be retrieved for PM and CDI. In
Section 3, we validate our model simulating both imaging techniques and evaluating the quality
of the reconstructions. In Section 4, we apply our criterion to synchrotron and FEL experiments
for the imaging conditions described in Section 3.

2. Signal-to-noise criterion

In this section, we develop a mathematical model, based on Gaussian scatterers, to predict the
SNR for both techniques. Using the projection approximation [20] a 2D Gaussian scatterer is
described by its transmission

t(x,y) = e− j(φ̄+Δφ(x,y)) , (1)

#255553 Received 21 Dec 2015; revised 29 Jan 2016; accepted 2 Feb 2016; published 8 Feb 2016 
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Resolution as a function of the maximum phase shift 
of the sample.   
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Fig. 3. Resolution as a function of the maximum phase shift in the sample (φmax) for PM
and CDI using FRC with half bit threshold criterion. We have computed the FRC of each
Gaussian scatterer with a square from [−5σ ,5σ ] for PM and CDI with our phantom image
and an analogous phantoms with features with a phase shift of 1, 2, 5, 6, 9, and 13 mrad.
The resolution for PM (CDI) is represented with square (circle) markers. The expected
resolution of 23 and 20 nm is represented by the horizontal dashed and continuous lines for
PM and CDI, respectively.
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Fig. 4. Best sensitivity as a function of the feature size (2σ ) for 1012 photons uniformly
distributed over the whole FOV. The dashed, continuous, and dotted-dashed lines represent
the best sensitivity for PM, CDI, and the criterion of [4], respectively.

5. Conclusions

In summary, we have proposed a criterion based on a SNR threshold which predicts whether
a feature of given size and scattering strength, placed inside a larger object, can be properly
retrieved with PM and CDI imaging methodologies. This is useful to design imaging experi-
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0.5 µm covering the whole object. For our PM geometry with big magnification z2 ≫ z1 as
shown in Fig. 1(a), z ≈ z1 = 12.6 µm. For this PM scenario, |A|≈ 0.16 and taking a sampling
in real space of a third of the feature size (ps = 0.67 nm) as suggested in [24], ω ≈ 0.14.
Therefore from Eq. (8) the SNRPM

eff ≈ 0.12
√

NS. Using the detectability threshold in Eq. (10) we
impose a condition over the number of scattered photons NPM

S ! 1800 photons. Using Eq. (6),
the achievable phase sensitivity (φmax) in the described PM geometry for a feature of 20 nm is
φPM

max ! 3 mrad.
Analogously for CDI, the focusing requirement is relaxed to two times the sample size

(FOVCDI = 1 µm), in order to fulfill the solution criterion for the iterative phase retrieval algo-
rithms [19]. Conversely, PM does not require this sampling constraint. From Eqs. (9) and (10)
we can obtain the condition for the number of scattered photons for CDI NCDI

S ! 1.6 ·104 pho-
tons. Thus the achievable sensitivity is φCDI

max ! 7 mrad.

3. Simulation and validation

In order to numerically validate the sensitivity calculations for both methods with our model, we
create a pure-phase phantom. This phantom has a background support with a φmax = 10 mrad,
which is on the order of magnitude of the phase shift expected for a biological sample in water
or ice at multi-keV X-rays [25], covering approximately a ∼ 0.5× 0.5 µm2 area. Inside of this
object we add three Gaussian scatterers, as depicted in Fig. 2(a). The values of the phase shifts
(φmax) of the scatterers are chosen according to the values calculated with our imaging criterion.

(a)

0.00

-0.01

-0.02

(c)

(b)

Fig. 2. (a) Simulated phantom with a 10 mrad phase background support. Inside of it
we have located three Gaussian scatterers of σ = 10 nm and φmax from left to right of
(3, 7, 11) mrad, respectively, the gray scale encodes the phase map and the red bar cor-
responds to 200 nm. The continuous (dashed) box represents the FOV for CDI (PM). We
display also the reconstruction for PM (b) and CDI (c) over the region of interest.

We simulate both imaging geometries with the above discussed FOVs at the object plane and
the same sampling in real space (ps). Using the projection approximation to describe the object,
paraxial propagation [26], and Poissonian noise, we simulate the intensities on the detector. For
PM we consider that the focal spot has a finite size, therefore we convolve our intensity pattern

#255553 Received 21 Dec 2015; revised 29 Jan 2016; accepted 2 Feb 2016; published 8 Feb 2016 
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Total entrance dose

Howels et al., J. El.Spectr.2009

Required imaging fluence as a 
function of feature size (2σ)

Howells

The number of required photons is proportional 
to the desired spatial resolution.   

M.R. Howells et al. / Journal of Electron Spectroscopy and Related Phenomena 170 (2009) 4–12 7

Fig. 2. (a) The X-ray fluence required to visualize a 10 nm cubic voxel of protein
of empirical formula H50C30N9O10S1 and density 1.35 g/cm3 against a background
of water (darker, upper curve) and vacuum (lighter, lower curve) with a statistical
accuracy defined by the Rose criterion and (b) the dose required to visualize a 10-nm
cubic voxel of protein of empirical formula H50C30N9O10S1 and density 1.35 g/cm3

against a background of water (darker, upper curve) and vacuum (lighter, lower
curve) with a statistical accuracy defined by the Rose criterion.

criterion for reliable detectability of a feature against background
noise. The requirement is generally that the feature signal should
be five times greater than the rms noise of the background. When
the noise is the shot noise of the feature signal itself then it is con-
ventional to set the particle count equal to 25. The curve for the
required fluence (Fig. 2(a)) is dominated by the !−2 scaling of the
cross-section. This argues for using the longest possible wavelength
for these experiments. On the other hand the wavelength should
be shorter than, say, a quarter to a half of the resolution so that the
diffraction angle is not too large, and short enough that the sample
is a weak absorber (<20%, say), so that data analysis can proceed
on the basis of the Born approximation. Unlike the required flu-
ence, the required dose does not show strong energy dependence
above about 1 keV. This is because the roughly !5/2 scaling of the
absorption coefficient tends to cancel the wavelength dependence
of h"/#s in Eq. (3). Eq. (3) also allows the calculation of the “required
dose for imaging” as a function of resolution d. We have evaluated
that for protein against a background of water for 1 keV and 10 keV
as shown by the continuous straight lines in Fig. 3. One can see that
the change in dose from 1 to 10 keV is not very significant.

Also from Eq. (3) the resolution scaling of the dose is seen to be
1/d4 and is determined entirely by the cross-section. Now apply-
ing the dose fractionation theorem we may say that the same dose
will be required to measure the same d × d × d voxel to the same
statistical accuracy in a 3D tomography experiment. Hence, the
inverse-fourth-power scaling with d, will also apply to a 3D sample.

These calculations have been revisited recently by some
of the present authors [60] in the context of serial crystal-

lography. Essentially the same calculation was presented but
without use of the dose fractionation theorem. The func-
tional dependence of all of the above results, including the
1/d4 scaling, were confirmed although with different numer-
ical prefactors. It is important to note that both of these
calculations have used similar idealized forms of the sample
: in our case that the chosen voxel is typical and in Starodub’s that
the sample density is constant within a given boundary. In nei-
ther case were the detailed structures that one would find in a real
sample taken into account. Thus we can only expect that the mea-
sured values of the dose-resolution scaling, that we will report in
the next section, will follow an approximate 1/d4 scaling. Staro-
dub et al. also point out that the number of X-rays needed for 3D
phase retrieval may be considerably more than that needed for the
standard geometrical–optical tomography.

We note that the inverse fourth-power scaling obtained above,
which is based on coherent superposition, appears to be in dis-
agreement with the third-power scaling derived by Shen et al.
[56] on the basis of incoherent superposition. However, in our
view, the disagreement is only apparent and both calculations can
be shown to be correct but belonging to different regimes. It is
fairly well-known that all hard X-ray scattering becomes effec-
tively incoherent at angles ($) that are sufficiently wide that the
scattering features are at an atomic length scale: $∼!/a where a
is the size of an atom. The recorded intensity is then the result of
a “random-walk” type of phasor summation in which the phase
differences are large and the coherent cross-terms tend to aver-
age to zero. On the other hand where the scattering features are
larger and the angles smaller ($∼!/d), where d is a few nanome-
ter or more, then we can use a macroscopic treatment based
on refractive index, the phase differences will be smaller and a
coherent phasor superposition will be appropriate. Fig. 3 in the
review by Bergh et al. [4] shows a helpful example in which fea-
ture sizes above 10 nm are shown to be in the coherent regime,
those below 1 nm in the incoherent regime and those between

Fig. 3. Graph summarizing information on the required dose for imaging and the
maximum tolerable dose. The required dose for imaging is calculated for protein of
empirical formula H50C30N9O10S1 and density 1.35 g/cm3 against a background of
water for X-ray energies of 1 keV (lower continuous line) and 10 keV (upper con-
tinuous line). The dashed continuations of these lines refer to the transition region
from coherent (d−4 scaling) to incoherent (d−3 scaling) behavior, both of which are
shown down to 1 nm resolution. Some of our measurements of the required dose
for imaging are plotted as crosses (see text and Fig. 4). The maximum tolerable dose
is obtained from a variety of experiments by ourselves (see text) and from the liter-
ature as described in Table 1. The types of data from the literature are identified by
the symbols as follows: filled circles: X-ray crystallography; filled triangles: electron
crystallography; open circles: single-particle reconstruction; open triangles: elec-
tron tomography; diamonds: soft X-ray microscopy (including XDM); filled squares:
ribosome experiment (see text and Fig. 5).
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Modern emerging technologies, such as additive manufactur-
ing, bioprinting, and new material production, require novel
metrology tools to probe fundamental high-speed dynamics
happening in such systems. Here we demonstrate the appli-
cation of the megahertz (MHz) European X-ray Free-Electron
Laser (EuXFEL) to image the fast stochastic processes induced
by a laser on water-filled capillaries with micrometer-scale
spatial resolution. The EuXFEL provides superior contrast
and spatial resolution compared to equivalent state-of-the-
art synchrotron experiments. This work opens up new pos-
sibilities for the characterization of MHz stochastic processes
on the nanosecond to microsecond time scales with object
velocities up to a few kilometers per second using XFEL
sources. © 2019 Optical Society of America under the terms of
the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.6.001106

Hard x-ray beams are well suited for microscopic two-
dimensional (2D) and three-dimensional (3D) imaging of sam-
ples not transparent to visible light due to their high penetration
power. Over the last two decades, the field of x-ray imaging has
developed considerably, mainly due to the availability of modern
third-generation synchrotrons producing x rays of high brilliance
[1]. These sources have provided access to the structural determi-
nation of specimens down to nanometer-scale resolutions.
Exploiting the (partial) spatial coherence of synchrotron x-ray

probes, several phase-sensitive techniques have been developed
providing access to the electron density of specimens either via
x-ray optical analyzers [2–4] or sophisticated algorithms [5,6].
While much attention has been paid to improving the spatial res-
olution of x-ray imaging to its limits, fewer resources have been
used to explore the boundaries of the temporal domain. With the
progress in the development of detectors over the last decade [7],
fast radiography and tomography with kilohertz frame rates are
available, allowing, for example, ∼100 tomograms per second
[8,9]. Only relatively recently has the stroboscopic nature of syn-
chrotrons been exploited. For example, imaging with synchron-
ized or individual x-ray pulses applied to fast stochastic transient
processes has been demonstrated [10–12]. Further advancement
of ultrafast x-ray imaging could be introduced by megahertz
(MHz) x-ray free-electron laser (XFEL) sources, where the high
flux per pulse can reveal dynamics of stochastic processes with
velocities up to the scale of several kilometers per second with
submicron-scale resolutions with high sensitivity to projected
densities. In this work, we exploit the unique properties of the
first operational hard x-ray MHz XFEL source European XFEL
(EuXFEL) and explore its possibilities for ultrafast x-ray micros-
copy with MHz sampling. The laser-induced dynamic processes
in an open-ended glass capillary filled with water was used as a
dynamic sample. We use this simple model system to show the
advantages of microsecond temporal resolution, micrometer
spatial resolution, and the improved signal-to-noise in the images
all brought about by using a MHz repetition rate XFEL. We
compare the results obtained at EuXFEL to that at European

Letter Vol. 6, No. 9 / September 2019 / Optica 1106

2334-2536/19/091106-04 Journal © 2019 Optical Society of America

E = 9.3 keV, 
the pulse train was filled with 128 x-ray pulses with a repetition rate of 1.128 MHz. 
The effective pixel size of the imaging system was 3.2 μm
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Challenges

Image reconstruction and analysis remains the bottleneck
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Processing data streams for quality check and reduction 
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Data reduction Quality control

MAX IV and NBI at Copenhagen Uni (FPGA project)

40 Gbs

fast 
feedback

FPGA

SME

CPU & RAM

Data reduction in tomo: minimize number of scans saved per experiment.
E.g. foam dynamics studies contain lot of static scans. One could correlate consecutive 3D 

volumes and if they match one is deleted. 
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Time-domain decomposition
R↵f (s, z, ✓) =

ZZZ
f (x , y , z, t)�(x cos ✓+y sin ✓�s)�(✓ � ↵t)dx dy dt

Decomposition

f (x , y , z, t) ⇡
M�1X

j=0

fj(x , y , z)'j(t),

where
�

fj(x , y , z)
 

M�1
j=0 are decomposition coefficients.

Example: Fourier basis 'j(t) = e
2⇡i t⇠j .

By using the linearity property of the projection operator:

R↵f (s, z, ✓) =
M�1X

j=0

Rfj(✓, s, z)'j

✓
✓

↵

◆
,

R⇤
↵g(x , y , z, t) =

M�1X

j=0

'j(t)R⇤ �
g'̂j

�
(x , y , z),

where R,R⇤ are standard projection and back-projection operators in the static
case.

Viktor Nikitin et al. “Four-dimensional tomographic reconstruction by time domain decomposition”.
Submitted to IEEE Transactions on Computational Imaging (2018).
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Real data reconstruction

Figure: Reconstruction of experimental data from the TOMCAT beamline at SLS: rheology study of liquid
foams. Data size: (N, N✓, Nz ) = (2016, 300 ⇥ 130, 1800), reconstruction size:
(N, N, Nz , Nt ) = (2016, 2016, 1800, 130). Left panel shows a 3D reconstruction by FBP from the angular
interval ✓ 2 [94⇡, 95⇡) linearly connected to the time period t 2 [94↵⇡, 95↵⇡) where the foam starts
continuously moving in vertical direction. Fast foam motion correspond to regions (a) and (b), whereas the foam
is almost static in the region (c).
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130 rotations
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FBP reconstruction Iterative, basis size M=24
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Real data reconstruction

Figure: Reconstruction of experimental data from the 2BM beamline at APS: study of ceramic particles
aggregation in alcohol. Data size: (N, N✓, Nz ) = (2560, 900 ⇥ 12, 700), reconstruction size:
(N, N, Nz , Nt ) = (2560, 2560, 700, 12). Left panel shows a 3D reconstruction by FBP from the angular
interval ✓ 2 [7⇡, 8⇡) linearly connected to the time period t 2 [7↵⇡, 8↵⇡) where ceramic particles are
continuously moving in horizontal direction.

Time-resolved reconstruction 21st December 2018 19/25

Tomography at 2BM, APS
2560 x 2560 x 700, 12 x 900 projections
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Reference for 4D reconstruction in
Tomobank

Time-resolved reconstruction 21st December 2018 22/25

https://tomobank.readthedocs.io

https://tomobank.readthedocs.io/
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Streaming
• Detect changes in structure 

in real time (relate 2D to 3D)
• Interactive stream viewing 

(and decision taking)
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Challenges

small field of view – large sample
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We can also define two grids Φθl,ωl,σl which is a set of larger pixels covering
the full object and a Φθr,ωr,σr region of interest that is a fine resolution grid
covering a smaller ROI (in short Φl and Φr). We make a restriction, that the
pixels of Φl cannot be partially covered by Φr, i.e., Φl(i, j) ⊆

⋃
(k,l)∈Z2 Φr(k, l),

or Φl(i, j) ∩ (
⋃

(k,l)∈Z2 Φr(k, l)) = ∅.
The image of the region of interest will be denoted by a new function

fr(u, v) =
{

f(u, v) , if ∃(i, j) ∈ Φr such that (u, v) ∈ (i, j) ,
0 , otherwise .

(11)

In a discrete context, xl and xr will represent, respectively, f on the Φl gird and
fr on the Φr grid.

Furthermore, we define four types of projections, with four equation systems:

– Let pll be a sequence of PΛl,f,σl values, and Rll be a matrix, such that
Rllxl = pll is equivalent with PΛl,f,σl on the Φl grid;

– Let plr be a sequence of PΛr,f,σl values, and Rlr be a matrix, such that
Rlrxl = plr is equivalent with PΛr,f,σl on the Φl grid;

– Let prr be a sequence of PΛr,fr,σr values, and Rrr be a matrix, such that
Rrrxr = prr is equivalent with PΛr,fr,σr on the Φr grid;

– And let prl be a sequence of PΛl,fr,σr values, and Rrl be a matrix, such that
Rrlxr = prl is equivalent with PΛl,fr,σr on the Φr grid.

This is represented in Fig. 2.

Fig. 2. Illustration of using multiple projection geometries.

Note, that in practical projection acquisition we can only measure the pll

and plz vectors.
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Algorithm 1. Two-round reconstruction by
Input: Rll, Rzz, Rlz projection coefficient matrices; A resolution connection matrix;
pll, plz projection values.
Output: xl low resolution full reconstruction, and xr high resolution reconstructed
ROI.

1: xl ← Recon(Rll,pll)
2: zl ← xl

3: for each {i ∈ {1, . . . , ω2
l } :

∑ω2
r

j=1 A(i, j) = 0} do
4: zl(i) ← 0
5: end for
6: c ← Rlrzl

7: xr ← Recon(Rrr,plr − c)
8: return (xl,xr)

3.2 Multi-resolution Tomography by Energy Minimization

Our second proposed method performs the reconstruction by minimizing a suit-
able energy function. The energy function has the form

E(xl,yr) =∥Rllxl + Rrlyr − pll∥2
2 + ∥Rlrxl + Rrryr − plr∥2

2+

γ∥g(xl)∥1 + δ∥g(xr)∥1 + µ∥yr∥1 + ν

ω2
r∑

i=1

∑

j∈N4(i)

|xr(i) − xr(j)| ,

(16)
where yr is not the reconstruction of the high resolution ROI by itself, but a
difference image refining the low resolution reconstruction, i.e.,

xr = yr + AT xl , (17)

g(x) is a non-negativity function

g(x) = min(−x, 0) , (18)

N4 (i) is the set of indices of the pixels 4-adjacent to the i-th pixel in xr, and γ,
δ, µ, ν are constants setting the importance of the parts of (16).

In a more intuitive description, the first ∥Rllxl + Rrlyr − pll∥2
2 term is only

a data fidelity term of the low resolution sinogram while the second ∥Rlrxl +
Rrryr −plr∥2

2 term stands for the data fidelity of the high resolution projections.
As the high resolution reconstruction is performed by the refinement of the low-
resolution reconstruction we need to simulate the LR and HR projections of both
xl and yr. The sum of the two gives the projections of the actual reconstructions
that should be the same as the pll and plr projections.

The next two terms stand for the positivity of the data. We should note,
that both the hight resolution and low resolution reconstructions should con-
tain positive values (since, in transmission tomography we do not have negative
absorption coefficients). For the low resolution term this is simply done by adding

Fidelity term in low. res. Fidelity term in high. res.

positivity
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Algorithm 1. Two-round reconstruction by
Input: Rll, Rzz, Rlz projection coefficient matrices; A resolution connection matrix;
pll, plz projection values.
Output: xl low resolution full reconstruction, and xr high resolution reconstructed
ROI.

1: xl ← Recon(Rll,pll)
2: zl ← xl

3: for each {i ∈ {1, . . . , ω2
l } :

∑ω2
r

j=1 A(i, j) = 0} do
4: zl(i) ← 0
5: end for
6: c ← Rlrzl

7: xr ← Recon(Rrr,plr − c)
8: return (xl,xr)

3.2 Multi-resolution Tomography by Energy Minimization

Our second proposed method performs the reconstruction by minimizing a suit-
able energy function. The energy function has the form

E(xl,yr) =∥Rllxl + Rrlyr − pll∥2
2 + ∥Rlrxl + Rrryr − plr∥2

2+

γ∥g(xl)∥1 + δ∥g(xr)∥1 + µ∥yr∥1 + ν

ω2
r∑

i=1

∑

j∈N4(i)

|xr(i) − xr(j)| ,

(16)
where yr is not the reconstruction of the high resolution ROI by itself, but a
difference image refining the low resolution reconstruction, i.e.,

xr = yr + AT xl , (17)

g(x) is a non-negativity function

g(x) = min(−x, 0) , (18)

N4 (i) is the set of indices of the pixels 4-adjacent to the i-th pixel in xr, and γ,
δ, µ, ν are constants setting the importance of the parts of (16).

In a more intuitive description, the first ∥Rllxl + Rrlyr − pll∥2
2 term is only

a data fidelity term of the low resolution sinogram while the second ∥Rlrxl +
Rrryr −plr∥2

2 term stands for the data fidelity of the high resolution projections.
As the high resolution reconstruction is performed by the refinement of the low-
resolution reconstruction we need to simulate the LR and HR projections of both
xl and yr. The sum of the two gives the projections of the actual reconstructions
that should be the same as the pll and plr projections.

The next two terms stand for the positivity of the data. We should note,
that both the hight resolution and low resolution reconstructions should con-
tain positive values (since, in transmission tomography we do not have negative
absorption coefficients). For the low resolution term this is simply done by adding
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We can also define two grids Φθl,ωl,σl which is a set of larger pixels covering
the full object and a Φθr,ωr,σr region of interest that is a fine resolution grid
covering a smaller ROI (in short Φl and Φr). We make a restriction, that the
pixels of Φl cannot be partially covered by Φr, i.e., Φl(i, j) ⊆

⋃
(k,l)∈Z2 Φr(k, l),

or Φl(i, j) ∩ (
⋃

(k,l)∈Z2 Φr(k, l)) = ∅.
The image of the region of interest will be denoted by a new function

fr(u, v) =
{

f(u, v) , if ∃(i, j) ∈ Φr such that (u, v) ∈ (i, j) ,
0 , otherwise .

(11)

In a discrete context, xl and xr will represent, respectively, f on the Φl gird and
fr on the Φr grid.

Furthermore, we define four types of projections, with four equation systems:

– Let pll be a sequence of PΛl,f,σl values, and Rll be a matrix, such that
Rllxl = pll is equivalent with PΛl,f,σl on the Φl grid;

– Let plr be a sequence of PΛr,f,σl values, and Rlr be a matrix, such that
Rlrxl = plr is equivalent with PΛr,f,σl on the Φl grid;

– Let prr be a sequence of PΛr,fr,σr values, and Rrr be a matrix, such that
Rrrxr = prr is equivalent with PΛr,fr,σr on the Φr grid;

– And let prl be a sequence of PΛl,fr,σr values, and Rrl be a matrix, such that
Rrlxr = prl is equivalent with PΛl,fr,σr on the Φr grid.

This is represented in Fig. 2.

Fig. 2. Illustration of using multiple projection geometries.

Note, that in practical projection acquisition we can only measure the pll

and plz vectors.
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Phantom 3

Fig. 3. Phantoms used in the testing. The regions of interest are indicated by red
circles. (Color figure online)

In case of 4-times downscaling – using the notation of Sect. 2 – we set the
parameters of the Φl, Φr grids and Λl, Λr projection geometries to be θl = 4,
ξl = 180, τl = 4 and θr = 1, ξr = 180, τr = 1. The σl centre of image and
rotation was placed into the centre of the image and σr into the centre of the
ROI. With phantoms Phantom 1 and 3 we set ωl = ωr = 512 and for Phantom 2
we used ωl = ωr = 256.

In the second set of tests with 8-times downscaling we used the parameters
θl = 8, ξl = 180 τl = 8 and θr = 1, ξr = 180 τr = 1. The σl centre of image and
rotation was again placed into the centre of the image and σr into the centre of
the ROI. With Phantom 1 and 3 we set ωl = ωr = 256 and for Phantom 2 we
used ωl = ωr = 128.
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Fig. 5. High-resolution reconstructions, with 8 times downscaling factor.

5 Conclusion and Future Plans

The paper represented new methods for Region of Interest tomography from
two projection sets. One projection set contains high resolution projection with
limited field of view only covering the ROI, while the other set is a low resolution
projection set covering the whole image. Our given algorithms are various tech-
niques based on the algebraic formulation of the reconstruction problem. They
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two projection sets. One projection set contains high resolution projection with
limited field of view only covering the ROI, while the other set is a low resolution
projection set covering the whole image. Our given algorithms are various tech-
niques based on the algebraic formulation of the reconstruction problem. They



24. 
September 
2019

Rajmund.Mokso@maxiv.lu.se44

Perspectives

New science?



Fast tomographic microscopy: 3D

45

Laboratory microCT

Medical CT

Synchrotron 
tomographic 
microscopy

2005

2010

2015
8 GB / s

20 volumes of 1k^3 /s
1 TB / 2 min

2020
?



Real life system dynamics

24. September 
2019

46
Rajmund.Mokso@maxiv.lu.se

ARTICLE

Using X-ray tomoscopy to explore the dynamics
of foaming metal
Francisco García-Moreno 1,2, Paul Hans Kamm 1,2, Tillmann Robert Neu1,2, Felix Bülk1,2, Rajmund Mokso3,
Christian Matthias Schlepütz 4, Marco Stampanoni4,5 & John Banhart1,2

The complex flow of liquid metal in evolving metallic foams is still poorly understood due to

difficulties in studying hot and opaque systems. We apply X-ray tomoscopy –the continuous

acquisition of tomographic (3D) images– to clarify key dynamic phenomena in liquid alu-

minium foam such as nucleation and growth, bubble rearrangements, liquid retraction,

coalescence and the rupture of films. Each phenomenon takes place on a typical timescale

which we cover by obtaining 208 full tomograms per second over a period of up to one

minute. An additional data processing algorithm provides information on the 1 ms scale. Here

we show that bubble coalescence is not only caused by gravity-induced drainage, as

experiments under weightlessness show, and by stresses caused by foam growth, but also by

local pressure peaks caused by the blowing agent. Moreover, details of foam expansion and

phenomena such as rupture cascades and film thinning before rupture are quantified.

These findings allow us to propose a way to obtain foams with smaller and more equally

sized bubbles.
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High-brilliance x-ray sources (x-ray free-electron lasers or
diffraction-limited storage rings) allow the visualization of
ultrafast processes in a 2D manner using single exposures.
Current 3D approaches scan the sample using multiple expo-
sures, and hence they are not compatible with single-shot
acquisitions. Here we propose and verify experimentally an
x-ray multi-projection imaging approach, which uses a crystal
to simultaneously acquire nine angularly resolved projections
with a single x-ray exposure. When implemented at high-
brilliance sources, this approach can provide volumetric
information of natural processes and non-reproducible
samples in the micrometer to nanometer resolution range,
and resolve timescales from microseconds down to femto-
seconds. © 2018 Optical Society of America under the terms of
the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.5.001521

Since their discovery, hard x rays have been crucial in the natural
sciences because of their penetration power and short wavelength,
which allows high-resolution imaging of thick samples, even in
native conditions. Among the currently used x-ray imaging tech-
niques, phase-contrast methods enhance the contrast sensitivity
by exploiting the phase shift due to variations in the electron den-
sity, rather than the intensity attenuation characteristic of radio-
graphic approaches [1]. Coherent techniques, which exploit phase
contrast, are regarded as the most suitable to achieve high reso-
lution [2], in that they can address micrometer to nanometer
scales. Because the high brilliance is the key parameter for coher-
ent techniques, their advent coincided with the realization of
third-generation synchrotron light sources. Novel x-ray sources
with orders of magnitude higher brilliance, such as diffraction-
limited storage rings [3] and x-ray free-electron lasers (XFELs)
[4–6], enlarge the spectrum of coherent applications, especially

addressing shorter timescales [7,8]. XFELs, in particular, provide
ultra-intense femtosecond pulses, which can image samples before
inducing any radiation damage [9]. This concept, known as
diffract before destroy, was demonstrated experimentally [10] by
reconstructing an object from an x-ray pulse, but before it
Coulomb explodes. The resolution and contrast sensitivity are
limited by the number of photons available in a single pulse,
and not by the maximum tolerable dose that preserves a given
resolution [11], as is the case for continuous sample illumination.
As a consequence, any method that requires multiple exposures of
the same sample, including three-dimensional (3D) techniques
such as tomography [12,13] and confocal microscopy [14], or
any scanning technique cannot be applied. Thus, XFEL applica-
tions aiming at 3D structural information, which deliver a high
dose, either require imaging of several identical copies of the
object [15] or are restricted to retrieving partial information from
a single exposure [16], as desired in ankylography [17].

Here we propose a scheme christened x-ray multi-projection
imaging (XMPI), which provides 3D structural information via
multiple 2D projections at different tomographic angles acquired
simultaneously from the same object. The key component of
XMPI is a beam splitter that generates a number of beams by Laue
diffraction, which illuminate a sample simultaneously from differ-
ent angles. Each of these beams retains the corresponding projec-
tion information. This idea was proposed in 1994 for the soft
x-ray regime [18] using a phase-grating splitter. In the hard x-ray
regime under consideration, however, suitable gratings are unre-
alistic; for example, the grating pitch required to achieve a deflec-
tion for the first diffracted order of 20° for 4 keV photons would
be 8.5 Å, which is too small for presently known manufacturing
methods. In contrast, Laue diffracted beams are much more suit-
able because the deflection angles reach tens of degrees, making
them compatible with the requirement for true tomographic
projections. In a general case, the Laue condition can be achieved
simultaneously for two different reflections by appropriately
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orienting the crystal [19]. This number can be increased by
exploiting symmetries of the crystal lattice, setting the x-ray en-
ergy to specific values, and positioning the crystal so that several
reflections sit simultaneously on the Ewald sphere. Figure 1(a)
illustrates the generation of eight deflected beams by the {113}-
family of Laue reflections of a face-centered cubic crystal, such as
diamond or silicon. The incoming beam direction, defined by its
momentum vector ~k0, is set parallel to a high-symmetry axis,
corresponding to the (001)-reflection direction in the depicted
example. All reflections related by a rotation around the symmetry
axis, e.g., corresponding to {113}-family, form identical angles
π∕2 − θ with respect to the incoming beam direction and share
the same reflection plane spacing d . The Laue condition for the
wavelength λ,

λ ! 2d sin"θ#, (1)

is then fulfilled simultaneously by all eight planes, yielding eight
diffracted beams with a deflection angle of 2θ. For a silicon crys-
tal, the photon energy that sets the {113} planes in the Laue con-
dition is 12.56 keV (see Supplement 1). Figure 1(b) provides
experimental evidence for the simultaneous generation of the
eight beams described above. The experiment was performed

at the Materials Science beamline [20] of the Swiss Light
Source (SLS), using a silicon crystal with the aforementioned
arrangement. Figure 1(c) shows the arrangement of the beam
splitter crystal and a sample positioned downstream the crystal
in the overlap region of all eight diffracted beams. To ensure
the simultaneous illumination of a sample of size t by all the
beams, the incoming beam diameter S and maximum distance
from the sample center to the closest face of the crystal L are con-
strained (see Supplement 1).

XMPI is a technique that can be applied to the near-field and
far-field imaging regimes. In this work, we demonstrate that the
different projections of an object are retrieved for both regimes
with resolutions around 17 μm and 80 nm, respectively.

The near-field imaging experiment was carried out at the
TOMCAT beamline at SLS [21]. Propagation-based phase-
contrast imaging was performed (see Supplement 1) using the
setup depicted in Fig. 2(a). The collimated beam at 12.56 keV
illuminated a Si(001) splitter mounted on a triple-axis goniom-
eter. Due to geometrical limitations of the experimental setup, the
crystal could not be oriented to simultaneously hit the eight re-
flections of the Si {113}-family [Fig. 1(a)], but only the Si(131)
and the Si(111) reflections, with deflections angles of 35.1° and
18.2°, respectively. A moth placed directly downstream from the
splitter was illuminated simultaneously by the three beams. Three
near-field images, shown in Figs. 2(b)–2(d), were recorded by
translating the detector to intercept each of the three beams.
The forward-direction image exhibits lower noise because of the
higher intensity. The image resolution of such images was esti-
mated to be about 17 μmbased on analyzing the edge profiles. The
rotation axes that relate the direct-beam projection [Fig. 2(b)] with
the two deflected beam projections [Figs. 2(c) and 2(d)] form the
expected angle of 11.9°. The features of the moth head observed in

(a)

(b) (c)

Fig. 1. Beam splitter. (a) Illustration of the eight reflections in recip-
rocal space of the {113}-family of a face-centered cubic crystal. The
dotted-dashed curve represents the intersection between the Ewald
sphere and the l ! 1 plane. The sample is positioned downstream from
the crystal to be illuminated by all the generated beams. (b) Image of the
direct beam and of the eight diffracted beams on a phosphor screen, gen-
erated from a single incoming beam traversing a 100 μm thick Si(001)
crystal perpendicular to the (001) surface. (c) Representation of the re-
quirement of the maximum distance L from the crystal beam splitter
surface to the sample such that the latter is illuminated by both the direct
and the diffracted beams. The relevant parameters are the diameter of the
direct beam S, the transverse extension of the sample t, and the deflection
angle 2θ of the diffracted beam.

(a)

(b) (c) (d)

Fig. 2. Near-field imaging experiment. (a) Experimental setup used at
the TOMCAT beamline of the Swiss Light Source. (b)–(d) Phase con-
trast images in the near-field regime recorded with the area detector
placed in the horizontal plane at deflection angles of (b) 0° (direct beam
direction), (c) 18.2° [diffracted beam from the Si(111) reflection], and
(d) 35.1° [diffracted beam for the Si(311) reflection]. The detection plane
was perpendicular to the direct beam. The rotation axes and rotation
directions with respect to the projection in (a) are marked with dashed
red lines and black arrows. The scale bar in (b) corresponds to 500 μm,
and the two red dashed lines illustrate the angle between the rotation
axes.
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the two deflected beam projections [Figs. 2(c) and 2(d)] form the
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Fig. 1. Beam splitter. (a) Illustration of the eight reflections in recip-
rocal space of the {113}-family of a face-centered cubic crystal. The
dotted-dashed curve represents the intersection between the Ewald
sphere and the l ! 1 plane. The sample is positioned downstream from
the crystal to be illuminated by all the generated beams. (b) Image of the
direct beam and of the eight diffracted beams on a phosphor screen, gen-
erated from a single incoming beam traversing a 100 μm thick Si(001)
crystal perpendicular to the (001) surface. (c) Representation of the re-
quirement of the maximum distance L from the crystal beam splitter
surface to the sample such that the latter is illuminated by both the direct
and the diffracted beams. The relevant parameters are the diameter of the
direct beam S, the transverse extension of the sample t, and the deflection
angle 2θ of the diffracted beam.
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Fig. 2. Near-field imaging experiment. (a) Experimental setup used at
the TOMCAT beamline of the Swiss Light Source. (b)–(d) Phase con-
trast images in the near-field regime recorded with the area detector
placed in the horizontal plane at deflection angles of (b) 0° (direct beam
direction), (c) 18.2° [diffracted beam from the Si(111) reflection], and
(d) 35.1° [diffracted beam for the Si(311) reflection]. The detection plane
was perpendicular to the direct beam. The rotation axes and rotation
directions with respect to the projection in (a) are marked with dashed
red lines and black arrows. The scale bar in (b) corresponds to 500 μm,
and the two red dashed lines illustrate the angle between the rotation
axes.
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orienting the crystal [19]. This number can be increased by
exploiting symmetries of the crystal lattice, setting the x-ray en-
ergy to specific values, and positioning the crystal so that several
reflections sit simultaneously on the Ewald sphere. Figure 1(a)
illustrates the generation of eight deflected beams by the {113}-
family of Laue reflections of a face-centered cubic crystal, such as
diamond or silicon. The incoming beam direction, defined by its
momentum vector ~k0, is set parallel to a high-symmetry axis,
corresponding to the (001)-reflection direction in the depicted
example. All reflections related by a rotation around the symmetry
axis, e.g., corresponding to {113}-family, form identical angles
π∕2 − θ with respect to the incoming beam direction and share
the same reflection plane spacing d . The Laue condition for the
wavelength λ,

λ ! 2d sin"θ#, (1)

is then fulfilled simultaneously by all eight planes, yielding eight
diffracted beams with a deflection angle of 2θ. For a silicon crys-
tal, the photon energy that sets the {113} planes in the Laue con-
dition is 12.56 keV (see Supplement 1). Figure 1(b) provides
experimental evidence for the simultaneous generation of the
eight beams described above. The experiment was performed

at the Materials Science beamline [20] of the Swiss Light
Source (SLS), using a silicon crystal with the aforementioned
arrangement. Figure 1(c) shows the arrangement of the beam
splitter crystal and a sample positioned downstream the crystal
in the overlap region of all eight diffracted beams. To ensure
the simultaneous illumination of a sample of size t by all the
beams, the incoming beam diameter S and maximum distance
from the sample center to the closest face of the crystal L are con-
strained (see Supplement 1).

XMPI is a technique that can be applied to the near-field and
far-field imaging regimes. In this work, we demonstrate that the
different projections of an object are retrieved for both regimes
with resolutions around 17 μm and 80 nm, respectively.

The near-field imaging experiment was carried out at the
TOMCAT beamline at SLS [21]. Propagation-based phase-
contrast imaging was performed (see Supplement 1) using the
setup depicted in Fig. 2(a). The collimated beam at 12.56 keV
illuminated a Si(001) splitter mounted on a triple-axis goniom-
eter. Due to geometrical limitations of the experimental setup, the
crystal could not be oriented to simultaneously hit the eight re-
flections of the Si {113}-family [Fig. 1(a)], but only the Si(131)
and the Si(111) reflections, with deflections angles of 35.1° and
18.2°, respectively. A moth placed directly downstream from the
splitter was illuminated simultaneously by the three beams. Three
near-field images, shown in Figs. 2(b)–2(d), were recorded by
translating the detector to intercept each of the three beams.
The forward-direction image exhibits lower noise because of the
higher intensity. The image resolution of such images was esti-
mated to be about 17 μmbased on analyzing the edge profiles. The
rotation axes that relate the direct-beam projection [Fig. 2(b)] with
the two deflected beam projections [Figs. 2(c) and 2(d)] form the
expected angle of 11.9°. The features of the moth head observed in
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Fig. 1. Beam splitter. (a) Illustration of the eight reflections in recip-
rocal space of the {113}-family of a face-centered cubic crystal. The
dotted-dashed curve represents the intersection between the Ewald
sphere and the l ! 1 plane. The sample is positioned downstream from
the crystal to be illuminated by all the generated beams. (b) Image of the
direct beam and of the eight diffracted beams on a phosphor screen, gen-
erated from a single incoming beam traversing a 100 μm thick Si(001)
crystal perpendicular to the (001) surface. (c) Representation of the re-
quirement of the maximum distance L from the crystal beam splitter
surface to the sample such that the latter is illuminated by both the direct
and the diffracted beams. The relevant parameters are the diameter of the
direct beam S, the transverse extension of the sample t, and the deflection
angle 2θ of the diffracted beam.
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Fig. 2. Near-field imaging experiment. (a) Experimental setup used at
the TOMCAT beamline of the Swiss Light Source. (b)–(d) Phase con-
trast images in the near-field regime recorded with the area detector
placed in the horizontal plane at deflection angles of (b) 0° (direct beam
direction), (c) 18.2° [diffracted beam from the Si(111) reflection], and
(d) 35.1° [diffracted beam for the Si(311) reflection]. The detection plane
was perpendicular to the direct beam. The rotation axes and rotation
directions with respect to the projection in (a) are marked with dashed
red lines and black arrows. The scale bar in (b) corresponds to 500 μm,
and the two red dashed lines illustrate the angle between the rotation
axes.
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experimental evidence for the simultaneous generation of the
eight beams described above. The experiment was performed

at the Materials Science beamline [20] of the Swiss Light
Source (SLS), using a silicon crystal with the aforementioned
arrangement. Figure 1(c) shows the arrangement of the beam
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The near-field imaging experiment was carried out at the
TOMCAT beamline at SLS [21]. Propagation-based phase-
contrast imaging was performed (see Supplement 1) using the
setup depicted in Fig. 2(a). The collimated beam at 12.56 keV
illuminated a Si(001) splitter mounted on a triple-axis goniom-
eter. Due to geometrical limitations of the experimental setup, the
crystal could not be oriented to simultaneously hit the eight re-
flections of the Si {113}-family [Fig. 1(a)], but only the Si(131)
and the Si(111) reflections, with deflections angles of 35.1° and
18.2°, respectively. A moth placed directly downstream from the
splitter was illuminated simultaneously by the three beams. Three
near-field images, shown in Figs. 2(b)–2(d), were recorded by
translating the detector to intercept each of the three beams.
The forward-direction image exhibits lower noise because of the
higher intensity. The image resolution of such images was esti-
mated to be about 17 μmbased on analyzing the edge profiles. The
rotation axes that relate the direct-beam projection [Fig. 2(b)] with
the two deflected beam projections [Figs. 2(c) and 2(d)] form the
expected angle of 11.9°. The features of the moth head observed in
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rocal space of the {113}-family of a face-centered cubic crystal. The
dotted-dashed curve represents the intersection between the Ewald
sphere and the l ! 1 plane. The sample is positioned downstream from
the crystal to be illuminated by all the generated beams. (b) Image of the
direct beam and of the eight diffracted beams on a phosphor screen, gen-
erated from a single incoming beam traversing a 100 μm thick Si(001)
crystal perpendicular to the (001) surface. (c) Representation of the re-
quirement of the maximum distance L from the crystal beam splitter
surface to the sample such that the latter is illuminated by both the direct
and the diffracted beams. The relevant parameters are the diameter of the
direct beam S, the transverse extension of the sample t, and the deflection
angle 2θ of the diffracted beam.
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Fig. 2. Near-field imaging experiment. (a) Experimental setup used at
the TOMCAT beamline of the Swiss Light Source. (b)–(d) Phase con-
trast images in the near-field regime recorded with the area detector
placed in the horizontal plane at deflection angles of (b) 0° (direct beam
direction), (c) 18.2° [diffracted beam from the Si(111) reflection], and
(d) 35.1° [diffracted beam for the Si(311) reflection]. The detection plane
was perpendicular to the direct beam. The rotation axes and rotation
directions with respect to the projection in (a) are marked with dashed
red lines and black arrows. The scale bar in (b) corresponds to 500 μm,
and the two red dashed lines illustrate the angle between the rotation
axes.
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contrast imaging was performed (see Supplement 1) using the
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illuminated a Si(001) splitter mounted on a triple-axis goniom-
eter. Due to geometrical limitations of the experimental setup, the
crystal could not be oriented to simultaneously hit the eight re-
flections of the Si {113}-family [Fig. 1(a)], but only the Si(131)
and the Si(111) reflections, with deflections angles of 35.1° and
18.2°, respectively. A moth placed directly downstream from the
splitter was illuminated simultaneously by the three beams. Three
near-field images, shown in Figs. 2(b)–2(d), were recorded by
translating the detector to intercept each of the three beams.
The forward-direction image exhibits lower noise because of the
higher intensity. The image resolution of such images was esti-
mated to be about 17 μmbased on analyzing the edge profiles. The
rotation axes that relate the direct-beam projection [Fig. 2(b)] with
the two deflected beam projections [Figs. 2(c) and 2(d)] form the
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dotted-dashed curve represents the intersection between the Ewald
sphere and the l ! 1 plane. The sample is positioned downstream from
the crystal to be illuminated by all the generated beams. (b) Image of the
direct beam and of the eight diffracted beams on a phosphor screen, gen-
erated from a single incoming beam traversing a 100 μm thick Si(001)
crystal perpendicular to the (001) surface. (c) Representation of the re-
quirement of the maximum distance L from the crystal beam splitter
surface to the sample such that the latter is illuminated by both the direct
and the diffracted beams. The relevant parameters are the diameter of the
direct beam S, the transverse extension of the sample t, and the deflection
angle 2θ of the diffracted beam.
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Fig. 2. Near-field imaging experiment. (a) Experimental setup used at
the TOMCAT beamline of the Swiss Light Source. (b)–(d) Phase con-
trast images in the near-field regime recorded with the area detector
placed in the horizontal plane at deflection angles of (b) 0° (direct beam
direction), (c) 18.2° [diffracted beam from the Si(111) reflection], and
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Near-field diffraction

the three images concur with being projections of the same object
along the directions given by (001), (111), and (1 3 1).

The far-field imaging experiment at 12.56 keV was performed
at the ID01 beamline of the European Synchrotron Research
Facility (ESRF) [22]. We performed coherent diffraction imaging
(CDI) [23], a well-established technique at storage rings and
XFELs [2], using the setup shown in Fig. 3(a). A Si(001) splitter
was mounted on a small hexapod to adjust the orientation. The
crystal was oriented such that the two {113}-family diffracted
beams accessible in the ID01 diffractometer geometry were seen
simultaneously on a pixel detector. A gold nanostructure exhibit-
ing nontrivial 3D features [Fig. 3(b)] and grown on a silicon
nitride membrane was glued on the downstream surface of the
crystal. As the coherent flux was not sufficient, the beam was
focused to a size of about S ! 1 μm at the crystal surface with
a numerical aperture, which matched the Darwin width of the Si
(131) reflection [24,25]. Unfortunately, the beam diameter S was
not sufficient to illuminate the sample simultaneously by all the
generated beams. However, this is not a limitation at sources with
higher coherent flux such as XFELs and diffraction-limited syn-
chrotrons. The sample was then translated transversely to produce
diffraction patterns on the detector positioned at a distance of
2.37 m. The three recorded diffraction patterns are shown in
the third column of panels in Figs. 3(c)–3(e), along with corre-
sponding simulations (first column) with the same signal levels.
The experimental patterns from the diffracted beam clearly mani-
fest larger background levels due to lower flux and background
components enhanced by the crystal. The CDI reconstructions

from the experimental diffraction images, obtained by applying
phase retrieval algorithms, and the simulated projections of the
sample are shown in the fourth and second columns, respectively,
of the abovementioned panels. Their comparison confirms that
the expected projections have been measured. The resolution
of the reconstructions, established using the phase-retrieval trans-
fer function criterion [26], was 18 nm for the direct beam pro-
jection and 77 and 85 nm for the two skew projections. A 3D
reconstruction of the object using the three measured projections
is depicted in Fig. 4. The reconstruction in yellow is compared to
the simulated model in semi-transparent red. For further exper-
imental and data analysis details, see Supplement 1.

In conclusion, we have experimentally validated XMPI, which
relies on a single crystal as the beam splitter to simultaneously gen-
erate tomographic projections from a single exposure of a sample to
the x rays. XMPI circumvents rotating the sample as for tomog-
raphy and represents a clear improvement with respect to pseudo-
3D single-shot methods. We conceived XMPI as an x-ray imaging
method for XFELs. In the optical domain, similar concepts can be
devised to retrieved 3D information with ultra-short laser pulses.
In the diffract-before-destroy approach, which is essential to
achieve submicrometer resolution fromweakly scattering, nonrep-
roducible objects, XMPI paves the way to 3D object reconstruc-
tions. Other applications, however, appear to be meaningful. If
XFELs that offer pulse trains at megahertz repetition rates, such
as the European XFEL or the Linac Coherent Light Source after
the planned upgrade, are operated at fluences below the sample
damage threshold, XMPI may enable to track the 3D structural
dynamics of stochastic and deterministic [27] processes at the sub-
microsecond timescale. At synchrotron facilities, XMPI may find
applications in cases where a sample cannot be rotated due to the
complexity of the sample environment. Furthermore, at diffrac-
tion-limited sources, such as at MAX IV Laboratory and future
ones, the time resolution for structural dynamics investigations
may be reduced well below the millisecond regime. We, therefore,
anticipate that dedicated XMPI instruments may be realized at
operational and future hard x-ray user facilities.
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Fig. 3. Far-field imaging experiment. (a) Experimental setup used at
the ID01 beamline of the ESRF synchrotron; (b) SEM image of the gold
nanostructure sample; (c)–(e) data related to (c) the direct beam and (d),
(e) the two accessible projections. From left to right, columns show the
simulated diffraction pattern, corresponding simulated object projection,
experimental diffraction pattern, and corresponding CDI reconstruction.
The scale bars in the diffraction patterns and in the reconstructions
correspond to 2 × 10−2 nm−1 and 200 nm, respectively.

Fig. 4. 3D reconstructions (see Visualization 1). These panels
depict the retrieved object (yellow) compared to the simulated phantom
(semi-transparent red) projected along (a) a direction perpendicular to
the direct beam, (b) the direct beam, and (c) an arbitrary direction.
The scale bar in (a) corresponds to 200 nm.
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Far-field diffraction
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Considerations for radiation dose optimization on the new sources:

v Fringe visibility is proportional to the transversal coherence length at the 
sample position ( = source size and distance). The contrast (CNR or SNR) comes 
through detecting the oscillation(s) of the Fresnel pattern. 

v Phase retrieval algorithms perform better for samples with weak (no) 
attenuation => it makes sense to increase X-ray energy until the attenuation 
can be neglected (<5%)

v Looking into most efficient photon detection schemes on the optics / detector 
side (e.g. simultaneous 2 distance acquisition)

v Make use of modern tomographic reconstruction algorithms

Mikko Juusola
University of Scheffield

Deep sub-micron in vivo imaging of 
photoreceptor movement in drosophila
100 fps @ ID16B  



Evidence for high resolution stereovision in compound eyes
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Mikko Juusola
University of Scheffield

For reliable scientific  interpretation In vivo measurement must be complemented by 
nanotomography with highest possible accuracy (cryo-nanotomo)
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Image: Alexandra Pacureanu, ID16A

Bee photoreceptors



Perspectives: new science?
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3D histology (in vivo)

• Image 3D living tissue at the cellular level in 3D

Nanoscale characterization of materials with realistic dimensions

• Pores, defects



Exploiting new phasing methods: convolutional neural networks
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Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3 ⇥ 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for
the final output computation.

architecture uses dilated convolutions. A dilated convolution
Dh,s with dilation s2 Z+ uses a dilated filter h that is nonzero
only at distances that are a multiple of s pixels from the center.⇤
Recently, it was shown that dilated convolutions are able to cap-
ture additional features in DCNNs that use the traditional scal-
ing approach (23). Furthermore, instead of having each layer
operate at a certain scale as in existing DCNNs, in the mixed-
scale approach each individual channel of a feature map within a
single layer operates at different scale. Specifically, we associate
the convolution operations for each channel of the output image
of a certain layer with a different dilation:

gij (zi�1)=

ci�1X

k=0

Dhijk ,sij zki�1. [3]

The proposed mixed-scale approach alleviates many of the dis-
advantages of the standard downscaling and upscaling approach.
First, large-scale information about the image quickly becomes
available in early layers of the network through relatively large
dilations, making it possible to use this information to improve
the results of deeper layers. Furthermore, information at a cer-
tain scale can be used directly to inform decisions at other scales
without having to pass through layers at intermediate scales. Sim-
ilar advantages were recently found when training large multi-
grid architectures (24). No additional parameters have to be
learned during training, since the mixed-scale approach does not
include learned upscaling operations. This results in smaller net-
works that are easier to train. Finally, although dilations sij must
be chosen in advance, the network can learn which combina-
tions of dilations to use during training, making identical mixed-
scale DCNNs applicable across different problems (experi-
ments below).

Dense Connections. When using convolutions with reflective
boundaries, the mixed-scale approach has an additional advan-
tage compared with standard scaling: All network feature maps
have the same number of rows and columns as the input and
output image, i.e., mi =m and ni =n for all layers i , and hence,
when computing a feature map for a specific layer, we are not
restricted to using only the output of the previous layer. Instead,
all previously computed feature maps {z0, . . ., zi�1}, including
the input image x, can be used to compute the layer output zi .
Thus, we change the channel image computation 1 and the con-
volutional operation 3 to

zji = � (gij ({z0, . . ., zi�1}) + bij )

gij ({z0, . . ., zi�1}) =
i�1X

l=0

cl�1X

k=0

Dhijkl ,sij zkl . [4]

⇤Alternatively, dilated convolutions can be defined without using dilated filters by
changing the convolution operation itself; see ref. 23 for a detailed explanation.

Similarly, to produce the final output image y, all feature maps
can be used instead of only those of the last layer. We call this
approach of using all previously computed feature maps densely
connecting a network.

In a densely connected network, all feature maps are maxi-
mally (re)used: If a certain useful feature is detected in a fea-
ture map, it does not have to be replicated in other layers to
be used deeper in the network, as in other DCNN architec-
tures. As a result, significantly fewer feature maps and train-
able parameters are required to achieve the same accuracy in
densely connected networks compared with standard networks.
The smaller number of maps and parameters makes it easier to
train densely connected networks, reducing the risk of overfitting
and enabling effective training with relatively small training sets.
Recently, a similar dense-connection architecture was proposed
which relied on a relatively small number of parameters (25);
however, in ref. 25 the dense connections were used only within
small sets of layers at a single scale, with traditional downscal-
ing and upscaling operations to acquire information at different
scales. Here, we combine dense connections with the mixed-scale
approach, enabling dense connections between the feature maps
of the entire network, resulting in more efficient use of all feature
maps and an even larger reduction of the number of required
parameters.

MS-D Neural Networks. By combining mixed-scale dilated convo-
lutions and dense connections, we can define a DCNN archi-
tecture that we call the MS-D network architecture. Similar to
existing architectures, an MS-D network consists of several lay-
ers of feature maps. Each feature map is the result of apply-
ing the same set of operations given by Eq. 4 to all previous
feature maps: dilated convolutions with 3 ⇥ 3 pixel filters and
a channel-specific dilation, summing resulting images pixel by
pixel, adding a constant bias to each pixel, and finally apply-
ing a ReLU activation function. The final network output is
computed with the same set of operations applied to all fea-
ture maps, using 1 ⇥ 1 pixel filters instead of 3 ⇥ 3 pixel fil-
ters. In other words, channels of the final output image are com-
puted by taking linear combinations of all channels of all feature
maps and applying an application-specific activation function to
the result:

yk =�0

 
X

i,j

wijk zji + b0k

!
. [5]

Different ways of choosing the number of channels per layer are
possible. Here, we use a simple approach with each layer hav-
ing the same number of channels, denoted by the network width
w , and the number of noninput and nonoutput layers of the net-
work denoted by the network depth d . A graphical representa-
tion of an MS-D network with w =2 and d =3 is shown in Fig. 3.
The parameters that have to be learned during training are the
convolution filters hijkl and biases bij of Eq. 4 and the weights

Fig. 4. (A–C) Example of the segmentation problem of the simulated
dataset, with (A) the single-channel input image, (B) the correct segmen-
tation with labels indicated by color, and (C) the output of a trained MS-D
network with 200 layers.

256 | www.pnas.org/cgi/doi/10.1073/pnas.1715832114 Pelt and Sethian

D. Pelt & J. Sethian, Mixed-scale dense
CNN for image analysis, PNAS 115, 2018 
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Projection microscopy, ID16 
where the output (experimental data) y and the additive noise ✏ are vectors of length M , the input
(the unknown quantity we try to estimate) x is a vector of length N , so that H is a M by N matrix
describing the linear model.

Probability density functions are assigned to this quantities: p(x) as the prior distribution,
p(y|x) as the likelihood and p(x|y) as the the posterior distribution. Applying the Bayes rule for
probabilities [24], the posterior distribution is found to be proportional to the multiple of the
previous two:

p(x|y) = p(y|x) p(x)
p(y) / p(y|x) p(x), (30)

where the denominator p(y) =
Ø

p(y|x) p(x) dx is a normalizing constant called evidence, that
will be ignored in the following formalism.

Let’s consider a white noise distribution for ✏ , p(✏ ) = N(✏ |0, v✏ I), i.e. a Gaussian distribution
with zero mean and where v✏ denotes the variance of the noise. In turn the likelihood follows a
Gaussian distribution of mean equal to the model simulation Hx and variance equal to that of the
noise:

p(y|x) = N(y|Hx, v✏ I) / v
� M

2
✏ exp{� 1

2v✏
ky � Hxk2}. (31)

A result that we make use of in the next section states that the estimator of the variance of a
Gaussian distribution follows an Inverse Gamma distribution, so that:

p(v✏ ) = IG(v✏ |↵✏, �✏ ) / v�(↵✏+1)
✏ exp{��✏/v✏ } (32)

The choice of the prior law is one of most sensible since it is mathematically equivalent to the
choice of the regularization term in the classical regularization theory. In our case we employ
a multivariate Gaussian distribution to describe the random vector x of unknowns, of mean x0
and covariance matrix Vx . The vj components of this vector are defined as independent random
variables following one-dimensional Gaussian distributions, of mean x0j and variance vj :

p(x) = N(x|x0,Vx) / exp{�1
2
(x � x0)⇤V�1

x (x � x0)}

p(x) =
÷
j

N(xj |x0j, vj) /
÷
j

v
� 1

2
j exp{

’
j

� 1
2vj

|x � x0j |2}
(33)

This ultimately leads to a solution comparable to applying an L2 norm penalization term in
Tikhonov regularization. The variance of the noise and of the prior distribution make up the
so-called hyper-parameters of the model, ✓.

In the case of maximum a posteriori (MAP) estimation of the posterior distribution p(x, ✓ |y) the
Bayesian approach [25] is able to infer on both the unknown quantity x and the hyper-parameters
of the model, ✓:

x̂ = arg max
x

p(x, ✓ |y) = arg min
x

J(x), where J(x) = � ln p(x, ✓ |y),

✓̂ = arg max
✓

p(x, ✓ |y) = arg min
✓

J(x)
(34)

The log-a-posteriori criterion J(x) is logarithmic in order to simplify the minimization of the
exponential functions that define the posterior distribution p(x, ✓ |y).

Here we propose a more sophisticated method, the Bayesian Variational Approximation
(BVA) [26], which begins with approximating the posterior distribution p(x, ✓ |y) by a separable
one q(x, ✓ |y) = q1(x) q2(✓). The quality of this approximation is assessed with the Kullback-
Leibler divergence measure.

KL(q1(x) q2(✓) : p(x, ✓ |y)) =
π

q1(x) q2(✓) ln
q1(x) q2(✓)

p(x, ✓ |y) dx d✓ (35)
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where the output (experimental data) y and the additive noise ✏ are vectors of length M , the input
(the unknown quantity we try to estimate) x is a vector of length N , so that H is a M by N matrix
describing the linear model.

Probability density functions are assigned to this quantities: p(x) as the prior distribution,
p(y|x) as the likelihood and p(x|y) as the the posterior distribution. Applying the Bayes rule for
probabilities [24], the posterior distribution is found to be proportional to the multiple of the
previous two:

p(x|y) = p(y|x) p(x)
p(y) / p(y|x) p(x), (30)

where the denominator p(y) =
Ø

p(y|x) p(x) dx is a normalizing constant called evidence, that
will be ignored in the following formalism.

Let’s consider a white noise distribution for ✏ , p(✏ ) = N(✏ |0, v✏ I), i.e. a Gaussian distribution
with zero mean and where v✏ denotes the variance of the noise. In turn the likelihood follows a
Gaussian distribution of mean equal to the model simulation Hx and variance equal to that of the
noise:

p(y|x) = N(y|Hx, v✏ I) / v
� M

2
✏ exp{� 1

2v✏
ky � Hxk2}. (31)

A result that we make use of in the next section states that the estimator of the variance of a
Gaussian distribution follows an Inverse Gamma distribution, so that:

p(v✏ ) = IG(v✏ |↵✏, �✏ ) / v�(↵✏+1)
✏ exp{��✏/v✏ } (32)

The choice of the prior law is one of most sensible since it is mathematically equivalent to the
choice of the regularization term in the classical regularization theory. In our case we employ
a multivariate Gaussian distribution to describe the random vector x of unknowns, of mean x0
and covariance matrix Vx . The vj components of this vector are defined as independent random
variables following one-dimensional Gaussian distributions, of mean x0j and variance vj :

p(x) = N(x|x0,Vx) / exp{�1
2
(x � x0)⇤V�1

x (x � x0)}

p(x) =
÷
j

N(xj |x0j, vj) /
÷
j

v
� 1

2
j exp{

’
j

� 1
2vj

|x � x0j |2}
(33)

This ultimately leads to a solution comparable to applying an L2 norm penalization term in
Tikhonov regularization. The variance of the noise and of the prior distribution make up the
so-called hyper-parameters of the model, ✓.

In the case of maximum a posteriori (MAP) estimation of the posterior distribution p(x, ✓ |y) the
Bayesian approach [25] is able to infer on both the unknown quantity x and the hyper-parameters
of the model, ✓:

x̂ = arg max
x

p(x, ✓ |y) = arg min
x

J(x), where J(x) = � ln p(x, ✓ |y),

✓̂ = arg max
✓

p(x, ✓ |y) = arg min
✓

J(x)
(34)

The log-a-posteriori criterion J(x) is logarithmic in order to simplify the minimization of the
exponential functions that define the posterior distribution p(x, ✓ |y).

Here we propose a more sophisticated method, the Bayesian Variational Approximation
(BVA) [26], which begins with approximating the posterior distribution p(x, ✓ |y) by a separable
one q(x, ✓ |y) = q1(x) q2(✓). The quality of this approximation is assessed with the Kullback-
Leibler divergence measure.

KL(q1(x) q2(✓) : p(x, ✓ |y)) =
π

q1(x) q2(✓) ln
q1(x) q2(✓)

p(x, ✓ |y) dx d✓ (35)
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where the output (experimental data) y and the additive noise ✏ are vectors of length M , the input
(the unknown quantity we try to estimate) x is a vector of length N , so that H is a M by N matrix
describing the linear model.

Probability density functions are assigned to this quantities: p(x) as the prior distribution,
p(y|x) as the likelihood and p(x|y) as the the posterior distribution. Applying the Bayes rule for
probabilities [24], the posterior distribution is found to be proportional to the multiple of the
previous two:

p(x|y) = p(y|x) p(x)
p(y) / p(y|x) p(x), (30)

where the denominator p(y) =
Ø

p(y|x) p(x) dx is a normalizing constant called evidence, that
will be ignored in the following formalism.

Let’s consider a white noise distribution for ✏ , p(✏ ) = N(✏ |0, v✏ I), i.e. a Gaussian distribution
with zero mean and where v✏ denotes the variance of the noise. In turn the likelihood follows a
Gaussian distribution of mean equal to the model simulation Hx and variance equal to that of the
noise:

p(y|x) = N(y|Hx, v✏ I) / v
� M

2
✏ exp{� 1

2v✏
ky � Hxk2}. (31)

A result that we make use of in the next section states that the estimator of the variance of a
Gaussian distribution follows an Inverse Gamma distribution, so that:

p(v✏ ) = IG(v✏ |↵✏, �✏ ) / v�(↵✏+1)
✏ exp{��✏/v✏ } (32)

The choice of the prior law is one of most sensible since it is mathematically equivalent to the
choice of the regularization term in the classical regularization theory. In our case we employ
a multivariate Gaussian distribution to describe the random vector x of unknowns, of mean x0
and covariance matrix Vx . The vj components of this vector are defined as independent random
variables following one-dimensional Gaussian distributions, of mean x0j and variance vj :

p(x) = N(x|x0,Vx) / exp{�1
2
(x � x0)⇤V�1

x (x � x0)}

p(x) =
÷
j

N(xj |x0j, vj) /
÷
j

v
� 1

2
j exp{
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� 1
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|x � x0j |2}
(33)

This ultimately leads to a solution comparable to applying an L2 norm penalization term in
Tikhonov regularization. The variance of the noise and of the prior distribution make up the
so-called hyper-parameters of the model, ✓.

In the case of maximum a posteriori (MAP) estimation of the posterior distribution p(x, ✓ |y) the
Bayesian approach [25] is able to infer on both the unknown quantity x and the hyper-parameters
of the model, ✓:

x̂ = arg max
x

p(x, ✓ |y) = arg min
x

J(x), where J(x) = � ln p(x, ✓ |y),

✓̂ = arg max
✓

p(x, ✓ |y) = arg min
✓

J(x)
(34)

The log-a-posteriori criterion J(x) is logarithmic in order to simplify the minimization of the
exponential functions that define the posterior distribution p(x, ✓ |y).

Here we propose a more sophisticated method, the Bayesian Variational Approximation
(BVA) [26], which begins with approximating the posterior distribution p(x, ✓ |y) by a separable
one q(x, ✓ |y) = q1(x) q2(✓). The quality of this approximation is assessed with the Kullback-
Leibler divergence measure.

KL(q1(x) q2(✓) : p(x, ✓ |y)) =
π

q1(x) q2(✓) ln
q1(x) q2(✓)

p(x, ✓ |y) dx d✓ (35)
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Summary
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With new sources we can explore a new spatio-temporal 
domain to understand structure and function of materials and 
bio samples

Full-field tomography with focused beam will profit the most 
from the new source. Some hope for further dose optimization 
also with parallel beams

Rajmund.Mokso@maxiv.lu.se

The main bottleneck remains data reconstruction and analysis 
(phase retrieval, quantification)

To enable new science with new sources in place we need to 
invest more in bringing the data handling on the same level by (i) 
bringing existing tools into routine use and (ii) exploiting new 
avenues



Probe reconstruction in the Fresnel regime

Thank you!


