

SUCCESSES AND CHALLENGES OF SYNCHROTRON X-RAY NANO-TOMOGRAPHY FOR THE CHARACTERIZATION OF SOLID OXIDE CELLS MATERIALS

Workshop on Coherence at ESRF-EBS | 12-09-2019 <u>M. Hubert</u>¹, F. Monaco¹, J. C. da Silva², F. Lefebvre-Joud¹, P. Cloetens², J. Laurencin¹

> ¹Univ. Grenoble Alpes – CEA/LITEN, 38054, Grenoble, France, ² European Synchrotron Radiation Facility (ESRF), 38000, Grenoble, France

Materials and operation of a typical SOC

 O_2 electrode Electrolyte H_2 electrode

- Ni-YSZ: ceramic-metallic composite

Reactive mechanisms illustrated in SOEC mode at both electrodes:

Microstructure evolution detrimental on cell performances

METHODOLOGY

liten

Ceatech

A coupled experimental and modelling approach

Performance ↔ **Microstructure** ↔ **Degradation**

SAMPLE PREPARATION

Specific process with Xe Plasma-FIB

• Faster than conventional Ga FIB

liten

Ceatech

- Sample size and localization easily chosen
- Axisymmetric geometry well adapted to tomography

M. Hubert et al., Solid State Ionics (2016)

MICROSTRUCTURAL CHARACTERIZATION

The Nano-Imaging ID16A beamline before EBS

J. C. da Silva et al., Optica (2017)

liten

Ceatech

MICROSTRUCTURAL CHARACTERIZATION

X ray focus

Magnified holotomography

- High electron density sensitivity
- Zoom-in effect, ideal for multi-scale approaches
- · Large field of view

liten

Ceatech

The empty beam correction

Without random

4000

2000

With random

2000

M. Hubert et al., Appl. Phys. Lett (2018)

Pores	Y SZ	1N1
0.280 ± 0.014	0.436 ± 0.003	0.262 ± 0.013
0.96 ± 0.06	0.60 ± 0.00	1.01 ± 0.03
2.48 ± 0.07	3.62 ± 0.03	2.09 ± 0.09
8.46	2.27	7.45
	4.75 ± 0.08	
	Pores 0.280 ± 0.014 0.96 ± 0.06 2.48 ± 0.07 8.46	Pores 1.52 0.280 ± 0.014 0.436 ± 0.003 0.96 ± 0.06 0.60 ± 0.00 2.48 ± 0.07 3.62 ± 0.03 8.46 2.27 4.75 ± 0.08

Microstructural properties of the Ni-YSZ electrode

M. Hubert et al., Appl. Phys. Lett (2018)

Nickel agglomeration in H₂ electrode

Reference

liten

Ceatech

Aged 1000h

M. Hubert et al., J. Power Sources (2018) F. Monaco et al., ECS (2019),to be submitted

• Significant Ni agglomeration

liten

Ceatech

- Significant decrease of the electrochemically active sites
- Inhibiting effect of the YSZ backbone on Ni agglomeration

Contribution of Ni agglomeration on performance losses can be extracted from these analyses (about 25-30%)

M. Hubert et al., J. Power Sources (2018) F. Monaco et al., ECS (2019),to be submitted -100

Synthetic microstructure modelling

- Experimental approach based on the manufacturing and characterization of many samples is time consuming
 - \rightarrow The modeling of synthetic microstructure can be an alternative method

H. Moussaoui et al., Comput. Mater. Sci. (2018)

liten

Clatech

liten

Ceatech

Illustration on a Ni-YSZ electrode

liten

Ceatech

packing

	YSZ Phase															
15 μm				Volum fractic (%)	Volume fraction (%)		hase meter (µm)	Specific Surface Area(µm ⁻¹)	Geometrical tortuosity factor (-)		Constri- ctivity (-)		M-factor (-)	Active TPBL density (µm ⁻²)		
		Random field		~0%		+3%		-1%	-1% ~0%		~0%		~0%	-1%		
		Real reconstruc	tion	on 44.08		0	.28	3.68	1.43		0.13		0.189	4.78		
			Sphere packin	e g	~0%	% ~0%		-0%	-4%	-1%		-3%		+2%	+4%	
								Ni phase								
	Volume fraction (%)	Phase diameter (µm)	Specific surface area (µm ⁻¹)	Geo tor fae	metrical rtuosity ctor (-)	Cons ctiv	nstri- :ivity (-)		volume fraction (%)	Pha diam (µ	Phase Si diameter si (µm) are		c ə 1 ⁻¹)	Geometrical tortuosity factor (-)	Constri- ctivity (-)	M-factor (-)
Random field	~0%	~0%	-1%		-3%	+22%		+21%	~0%	+3%		+1%		-3%	+22%	+22%
Real econstruc tion	28.04	0.28	2.67	1	1.67	0.09		0.03	27.88	0.	33	2.30)	1.75	0.08	0.041
Sphere	~0%	~0%	-2%		-3%	+16	5%	+17%	~0%	~()%	-2%		-6%	+18%	+21%

The mismatch does not exceed few percents (except for constrictivity)

Similar results with the other electrodes

OVERVIEW

liten

Ceatech

Integrated experimental and modelling approach

Validated numerical tools to investigate SOC

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives 17 rue des Martyrs | 38054 Grenoble Cedex www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019