X-ray Photon Correlation

Spectroscopy

Gerhard Grübel Workshop on Coherence at ESRF-EBS ESRF, Grenoble, France September 9-13, 2019

Layout

XPCS Basics

Higher order correlation functions The benefits of a long beamline

Applications

Glass transition (crystallization)

Complex fluids/ the aqueous environement

Biological systems

Magnetism

XPCS at higher X-ray energies

Outlook

ESRF needs an XPCS/Coherence beamline XPCS performance ~ B^2

http://www.physics.ucla.edu/research/imaging/research_CDI.html

Higher Order Correlation Functions

C(Q,Q',t,t')

 $= \langle I(Q,t)I(Q',t') \rangle_{ensemble} \int \int \int e^{-iQ(r-s)-iQ'(r'-s')} g_4(r,s,t,r',s',t')$ with $g_4(r,s,t,r',s',t') \sim \langle \rho(r,t)\rho(s,t)\rho(r',t')\rho(s',t') \rangle$

→ local, transient symmetries (e.g. molecular fluids,...)

→ fluctuations (accompanying equilibrium and non-equilibrium dynamics) $C \equiv C_{Q,Q'}(\Delta) \sim \langle I(Q,\varphi)I(Q,\varphi + \Delta)\varphi \rangle$ XCCA

$$C \equiv C_Q(\tau) \sim \langle I(Q,t) | I(Q,t+\tau) \rangle$$

XPCS

based on coherent X-ray beams

Sci. Rep. 4, 5234 (2014); Opt. Exp. 21, 24647 (2013); Opt. Exp. 20, 9760 (2012); PRL 108, 024801 (2012); Sci. Rep. 5, 17193 (2015)

Higher Order Correlation Techniques (XCCA, XPCS)

XPCS (X-ray Photon Correlation Spectroscopy)

ESRF-EBS: B x 100 \rightarrow 10000 times faster dynamics

DESY. XPCS - Coherence at ESRF-EBS, ESRF, September 9-13, 2019

Page 5

 R_{SN} constant: $\tau_c^{min} \sim 1/B^2$

XPCS at ESRF-EBS:

XPCS can access non-equilibrium dynamics

Ordering kinetics in Cu₃Au: after a quench ordering on the fcc lattice occurs (with patches in the four allowed groundstates). At later t domains coarsen with $R(t) \sim t^{1/2}$

Two-time correlation function: $C(q, t_1, t_2)$: access to fluctuations about the average behaviour up to now only for (very) slow processes: need ESRF-EBS

Fluerasu et al. PRL 94,055501,2005

XPCS: speckle issues

Do not modify sample with XPCS beam (use as big beam as possible) Illuminate sample coherently

 $\sigma \cong \xi_{x/y} = 100 \ \mu m$ at 100m

Resolve speckle on detector

 $D_{pixel} \le D_s = (\lambda / \sigma) \times L = 100 \ \mu m$

Locate (fast, pixelated) detector at distance L

 $L=D_{S} / (\lambda / \sigma) = (1 \text{ Angstrom}) =$

100m

A 200m beamline is an excellent choice.

Obey: $PLD \leq \xi_l = \lambda (\lambda/\Delta\lambda)$

Applications

- Glass Transition
- Complex Fluids / the aqueous environment
- Bio systems (see talk C. Gutt)
- Magnetism
- XPCS at higher energies

Structure of Fluids and Glasses

Some liquids do not crystallize below the melting point but instead enter into a supercooled state and upon cooling eventually become a glass.

Simulations indicate coexistence of local, icosahedral order (LIO) and medium-range crystalline order (MRCO).

Crystallization is suppressed by geometrical frustration:

- o Tendency towards global, icosahedral order with geometrical frustration since space cannot be filled.
- o Tendency towards crystallization suppressed by local order.

Shintani & Tanaka *Nature Physics* 2, 200 (2006)

Dynamics of Fluids and Glasses

Dynamics in liquids slows down dramatically and becomes progressively more (temporally) heterogeneous. Simulations (*Tanaka et al., Nature Mat. 9(2010)324*) indicate that heterogeneous dynamics is the result of critical-like fluctuations of (static) **structural order** (glass transition \Leftrightarrow critical phenomena): Slower regions have higher order. Characteristic lengths ξ and lifetimes τ of temporally ordered regions increase upon cooling in a correlated manner.

<u>Claim:</u> structural order = **medium-range <u>bond orientational order</u>**

(without traces in S(Q))

Glassforming fluids: The tracer issue

Conrad et al., PRE 91, 042309, 2015

Dynamical Heterogeneities

Strong dynamical heterogeneities at 222K (17 degs above the glass transition) but can't reach Tg (timescale/damage)

Want to get closer to T_g to study the regions with correlated dynamics: ESRF-EBS

See also talk: M. Reiser

χ_{T} normalized variance of the instantaneous correlation function

Metallic glasses during aging

Giordano & Ruta Nat. Comms 7, 10334, 2016

Aging (or relaxation) regimes in out-of-equilibrium systems (rapidly quenched metallic glass) goverened by two processes:

- > Rearrangements that release residual stresses
- > Medium range ordering process

Second fast (β -) relaxation process at high T (513K): Onset of medium range ordering (MRO) (crystallization)

Too fast to be detected: ESRF-EBS

MRO accessible to XCCA

Aqueous environements

Stokes-Einstein diffusion

Understand dynamics of particles in liquids \rightarrow complex fluids

- Stokes-Einstein diffusion
 - $D = \frac{k_B T}{6\pi\eta r}$, with viscosity η and particle radius r
 - Brownian time $\tau_B = r^2/D$

ESRF-EBS will give acces to the majority of waterbased systems

(transport in pores, under confinement...)

Confined liquids

Speckle Visibility Technique: Bio-XPCS

Enables access to radiation sensitive samples: Biology (see Gutt et al.)

record contrast as a function of bunch length T_e

visibility(Q, T_e) =
$$\beta_0/T_e \int_0^{Te} 2(1 - \tau/Te) |f(Q, t)|^2 dt$$

in the limit of very low intensities given by the ratio of zeros to one or double to single events:

 $v(Q, T_e) = P(0, T_e)/P(1, T_e) - 1/\langle k \rangle$

Bandyopadhyay et al., Rev.Sci.Instr. 76 (2005) 093110 deCaro et al., JSR 20 (2013) 332 Verwohlt et al., PRL 120 (2018) 168001

Magnetic structures: The spiral antiferromagnet holmium

Magnetisation Dynamics

Figure 1 | Magnetic speckle movies

(a) Static speckle: 52 K

Thin holmium film $(0,0,0+\tau)$ measured at the M edges

S. Konings, C. Schüßler-Langeheine, H. Ott, E. Weschke, E. Schierle, H. Zabel, and J.B. Goedkoop *Phys. Rev. Lett.* 106, 077402 (2011) ESRF-EBS will allow to look into the fluctuations of a single (≈100 nm) domain (at Ho L-edge)

XPCS at higher X-ray energies

Stephenson et al.

Two-Time Correlations During Layer-By-Layer Growth

Preliminary results on m-plane GaN

(coherent pink beam, 26 keV)

Initial analysis compares well with simulations of LBL growth on miscut surface

Speckles getting smaller with increasing E: need larger sample to detector distance: ESRF-EBS

Growth of 4.5 ML; correlations at half-integer ML

Summary

Outlook

- DLSR based XPCS gives acces to the relevant fast dynamics
- Perspective to tackle relevent issues in glasses, soft matter, liquids, biology,
- Many questions related to materials research will be within reach

 2D detection gives access to higher order correlation functions C(q₁, q₂, t₁,t₂). Need theory support to identify the appropriate correlator C

Acknowledgement

Felix Lehmkühler, Wojciech Roseker, Francesco Dallari, Avni Jain, Lara Frenzel, Irina Lokteva, Michael Walther, Michael Koof, Joana Valerio, Verena Markmann, Wonyuk Lee

Colleagues from P10/PETRA III

Colleagues from ID10/ESRF

Colleagues from ANL, McGill and SLAC

MID gang at E-XFEL

The End