

Coherent diffractive imaging of nonperiodic self-assembled colloidal nanocrystals

Cinzia Giannini

☑ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Colloidal Nanomaterials

2D Materials Engineering

Printed and Molecular Electronics

Nanotechnology for Precision Medicine

NanoChemistry

☐ cinzia.giannini@ic.cnr.it
① +39 080 5929167

ICDI CNR Istituto di Cristallografia

Outline

- Colloidal nanocrystals can be prepared with high degree of control in size, shape and composition. Colloidal nanocrystals are used as building blocks to prepare hydrid systems or Superlattices (SL)
- (GI)WAXS-(GI)SAXS
- cSAXS and scanning cSAXS (ptychography)
- perspectives

□ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

CNR Istituto di Cristallografia

Length scales

$$q = \frac{4\pi}{\lambda}\sin(\theta) = \frac{2\pi}{d} \qquad \qquad \vec{q} = \vec{k_d} - \vec{k_i}$$

Technique	d (nm)	q (Å⁻¹)	θ(deg) for λ=1.5405Å
uSAXS/uSAXD	1000	0.00063	0.0044
SAXS/SAXD	100	0.0063	0.044
SAXS/SAXD	10	0.063	0.44
WAXS/WAXD	1	0.63	4.4
WAXS/WAXD	0.1	6.3	50.6

Figure 1

ID02 - TIME-RESOLVED ULTRA SMALL-ANGLE X-RAY SCATTERING

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

Technique	d (nm)	q (nm¹)	q (Å⁻¹)	θ(deg) for λ=1.5405Å
USAXS/USAXD	1000	0.0063	0.00063	0.0044
SAXS/SAXD	100	0.063	0.0063	0.044
SAXS/SAXD	10	0.63	0.063	0.44
WAXS/WAXD	1	6.3	0.63	4.4
WAXS/WAXD	0.1	63	6.3	50.6

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

len len

CNR Istituto di Cristallografia

X-ray MicroImaging L@b

X-ray microimaging laboratory (XMI-LAB)

D. Altamura, R. Lassandro, F. A. Vittoria, L. De Caro, D. Siliqi, M. Ladisa and C. Giannini

IC DI CNR Istituto di Cristallografia

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

J. Appl. Cryst. (2012). 45, 869–873

X-ray MicroImaging L@b

Beam Flux,

⊠ cinzia.giannini@ic.cnr.it (1) +39 080 5929167

CNR Istituto di Cristallografia

ICDI

J. Appl. Cryst. (2012). 45, 869-873

three pinholes camera Rigaku Smax 3000

X-ray microimaging laboratory (XMI-LAB)

D. Altamura, R. Lassandro, F. A. Vittoria, L. De Caro, D. Siliqi, M. Ladisa and C. Giannini J. Appl. Cryst. (2012). 45, 869–873

SAXS: Triton™20 detector, a 20cm diameter multi-wire gasfilled proportional counter

WAXS: RAXIA Image Plate with off line reader

□ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

CNR Istituto di Cristallografia

IC|**JI**

Transmission VS Reflection

☐ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Lab VS Synch

SAXS – rat tail tendon

⊠ cinzia.giannini@ic.cnr.it

WAXS

$\sin\theta = \lambda / 2d$
Large $\theta \rightarrow$ small d
Small $\theta \rightarrow$ large d

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Emi

CNR Istituto di Cristallografia

IC DI

WAXS

Quantum Dots: Synthesis and Characterization

D Dorfs, R Krahne, A Falqui, and L Manna, Istituto Italiano di Tecnologia, Genoa, Italy

C Giannini, CNR-Istituto di Cristallografia (IC), Bari, Italy

D Zanchet, Laboratório Nacional de Luz Síncrotron, Campinas-SP, Brazil

© 2011 Elsevier B.V. All rights reserved.

⊠ cinzia.giannini@ic.cnr.it) +39 080 5929167

Emi

Main information

- Crystal structure determination (single phase)
- Phase Identification pure crystalline phases or mixtures
- Ouantitative Phase Analysis (QPA)
- Preferred Orientation (texture)
- Crystalline domain size/shape and lattice defects
- Residual Stress Field

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Nanocrystals

Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry J. Phys. Chem. 1996, 100, 12142-12153 □ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Keni

CNR Istituto di Cristallografia

IC|**J**|

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

Structure: single phase

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

IC DI

Anatase [91%]

Stucture mixture

Identifier	7206075	Identifier
Literature Reference	Rezaee, Masih, Mousavi Khoie, Seyyed Mohammad, Liu, Kun Hua,	Literature
	CrystEngComm (2011), 13, 5055	Formula
Formula	O ₂ Ti	Compoun
Compound Name	Titanium oxide - anatase	Synonym
Synonym		Space Gro
Space Group	I 4 ₁ /a m d	Cell Lengt
Cell Lengths	a 3.7850 b 3.7850 c 9.5196	Cell Angle
Cell Angles	α. 90 β 90 γ 90	Cell Volum
Cell Volume	136.38	

9007432
Baur, W. H., Acta Crystallographica (19 56), 9 , 515
O ₂ Ti
rutile
P 4 ₂ /m n m
a 4.594 b 4.594 c 2.959
α 90 β 90 γ 90
62.4492

🖂 cinzia.giannini@ic.cnr.it) +39 080 5929167

Rutile [9%]

Structure of WOx nanocrystalline powders

Data can be explained either as: $W_{18}O_{49}$ (ICSD=15254) or $WO_{2.626}$ (ICSD=72544) phases.

□ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

CNR Istituto di Cristallografia

urrent structure:	72544-ICSD		•
Customise	Identifier	72544-ICSD	
Structure Diagram Atoms	Literature Reference	Barabanenkov, Yu.A.;Zakharov, N.D.;Zibr ov, I.P.;Filonenko, V.P.;Werner, P.;Popov, A.I.;Vaľkovskii, M .D. , <i>Unknown</i> (0)	
Bonds	Formula	O _{2.625} W	
Contacts	Compound Name	Tungsten Oxide (1/2.6)	E
Centroids	Synonym		
Planes	Space Group	Pbam	
Symmetry	Cell Lengths	a 21.431(9) b 17.766(7) c 3.783(2)	
Distances	Cell Angles	α. 90 β 90 γ 90	
Angles	Cell Volume	1440.35	
Torsions	Z, Z'	Z : 32 Z' : 0	
All Angles	P.Eactor (%)	75	-

	: [15254-ICSD		•
Customise	Identifier	15254-ICSD	*
Structure	Literature Reference	Viswanathan, K.;Brandt, K.;Salje, E. , <i>Unknown</i> (0)	
Diagram	Formula	O ₄₉ W ₁₈	
Atoms	Compound Name	Tungsten Oxide (18/49)	
Bonds	Synonym		
Contacts	Space Group	P 2/m	_
Centroids	Cell Lengths	a 18.334 b 3.786 c 14.044	-
Planes	Cell Angles	α. 90 β 115.2 γ 90	
Symmetry	Cell Volume	882.052	
Distances	Z, Z'	Z : 1 Z ': 0	
Angles	R-Factor (%)	6.5	
Torsions	Disorder		
All Angles	Polymorph		-

WO_{2.626} (ICSD=72544) orthorhombic

W₁₈O₄₉ (ICSD=15254)

monoclinic

⊠ cinzia.giannini@ic.cnr.it) +39 080 5929167

CNR Istituto di Cristallografia

IC DI

Higher resolution data

The XPD data collected at IC (IC-XPD) were acquired with a Bruker D8-Discover (3.3 kW) diffractometer equipped with a Cu source (8KeV, λ =1.540562 Å)

The NSLS data (NSLS-XPD) were measured using X-ray radiation with an energy of 66.7 keV (λ =0.18597 Å).

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

Pair Distribution Function

Pair distribution function (PDF) gives the probability of finding an atom at a distance "r" from a given atom.

□ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

Structure of WOx nanocrystalline powders

Results of the PDF data allowed to identify the **monoclinic W**₁₈**O**₄₉ **crystal phase** (ICSD # 15254); fitting proved that the actual stoichiometry was **W**_{16±0.4}**O**_{45±3} □ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

CNR Istituto di Cristallografia

ICL

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

Size/Shape

CdTe tetrapods

PbSe stars

CdSe nanorods

Ag nanocubes

PbSe nanowires

IC JI

☐ cinzia.giannini@ic.cnr.it
① +39 080 5929167

nano carries for drug delivery

Drug molecule

☐ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

IC|**DI**

nano carries for drug delivery

- (a) Spherical: d >2,000 nm accumulate readily within spleen and liver, as well as in the capillaries of the lungs. d~100–200 nm extravasate through vascular fenestrations of tumors and escape filtration by liver and spleen. d>150 nm, more and more nanoparticles are entrapped in liver and spleen. d<5 nm are filtered out by the kidneys;
- (b) Non-spherical: Different shapes exhibit unique flow characteristics that substantially alter circulating lifetimes, cell membrane interactions and macrophage uptake, which in turn affect biodistribution among the different organs;
- (c) Charge influences circulation times and interaction with resident macrophages of organs, with positively charged particles more prone to sequestration by macrophages in the lungs, liver and spleen.

☐ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Incoherent scattering assembly

☐ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

IC|**JI**

SAXS

SAXS

proportional to that of a single particle

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

SAXS

Solid sphere

⊠ cinzia.giannini@ic.cnr.it (1) +39 080 5929167

CNR Istituto di Cristallografia

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Smi

SAXS of non-crystalline particles

SAXS patterns

Pair distribution functions

TEM

□ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

CNR Istituto di Cristallografia

100 nm

IC|**JI**

□ cinzia.giannini@ic.cnr.it
□ +39 080 5929167

CNR Istituto di Cristallografia

IC DI
SAXS of crystalline particles

SAXS patterns

Pair distribution functions

Keni

CNR Istituto di Cristallografia

IC|**JI**

SAXS/WAXS

SAXS/WAXS

crystalline domain - WAXS

NP shape / size SAXS

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

CNR Istituto di Cristallografia

ICDI

What is the size/shape

for nanoparticles on surfaces?

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

GISAXS

FULL SPHERE

CYLINDER

CUBOCTAHEDRON

HALF SPHERE

PYRAMID

TETRAHEDRON

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 Intensity scale : log10

SAXS patterns

Nanomaterials and Nanotechnology

Assembled Nanostructured Architectures Studied By Grazing Incidence X-Ray Scattering

Invited Feature Article

INTECH

Davide Altamura¹, Teresa Sibillano¹, Dritan Siliqi¹, Liberato De Caro¹ and Cinzia Giannini^{1,*}

1 Istituto di Cristallografia, Sede di Bari, Bari, Italy * Corresponding author: cinzia.giannini@ic.cnr.it

Pair distribution functions

p(r), relative

0

2 4

6

10

r, nm

CNR Istituto di Cristallografia

IC DI

open science | open minds

Nanomaterials and Nanotechnology

Assembled Nanostructured Architectures Studied By Grazing Incidence X-Ray Scattering

Invited Feature Article

Davide Altamura¹, Teresa Sibillano¹, Dritan Siliqi¹, Liberato De Caro¹ and Cinzia Giannin^{1,*} ¹ bituno di Cristalografia, Sede di Bari, Bari, Ibay ² Corresponding autori crista glammille cavit

➢ cinzia.giannini@ic.cnr.it
 ⑨ +39 080 5929167

les les

GISAXS

INTECH open science (spen minds Nanomaterials and Nanotechnology

Assembled Nanostructured Architectures Studied By Grazing Incidence X-Ray Scattering

Invited Feature Article

Davide Altamura¹, Teresa Sibillano¹, Dritan Siliqi¹, Liberato De Caro¹ and Cinzia Giannini^{1,*} 1 latua d Cetalografia, Sede d Bar, Bau, Bay Corresponding autor cinada adminifector it

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

GISAXS on Au nanoparticles on substrates

Table 1	. Ex	perimental	Conditions	s Used	for	the	Realization
of the	Two	Different	Teflon-like	Films			

Si/TL_	Si/TL,
20 sccm	20 sccm
10 sccm	20 sccm
200 mTorr	200 mTom
200 W	250 W
	St/TL ₂ 20 sccm 10 sccm 200 mTorr 200 W

THE JOURNAL OF CHEMISTRY C

Article pubs.acs.org/JPCC

Two-Dimensional Plasmonic Superlattice Based on Au Nanoparticles Self-Assembling onto a Functionalized Substrate

Michela Corricelli,^{†,‡} Nicoletta Depalo,[†] Elisabetta Fanizza,^{†,‡} Davide Altamura,[§] Cinzia Giannini,[§] Dritan Siliqi,[§] Rosa Di Mundo,[‡] Fabio Palumbo,[⊥] Vasily G. Kravets,^{||} Alexander N. Grigorenko,^{||} Angela Agostiano,^{†,‡} Marinella Striccoli,[†] and M. Lucia Curri^{*,†}

[†]Istituto per i Processi Chimico Fisici (IPCF-CNR) Bari, c/o Dipartimento di Chimica and [‡]Dipartimento di Chimica, Università degli Studi di Bari, Via Orabona 4, Bari I-70126, Italy [§]Istituto di Cristallografia (CNR-IC), Via Amendola 122/O, Bari I-70126, Italy [⊥]CNR-IMIP, Istituto di Metodologie Inorganiche e Plasmi, Via Orabona 4, Bari I-70126, Italy ^{II}School of Physics and Astronomy, the University of Manchester, Manchester M13 9PL, United Kingdom

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

Keni

CNR Istituto di Cristallografia

IC|**JI**

GISAXS on Au nanoparticle 2D superlattices

CrystEngComm

PAPER

GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices†

Cite this: CrystEngComm, 2014, 16 9482

IC|**D**|

M. Corricelli,‡^{ab} D. Altamura,‡^c M. L. Curri,^b T. Sibillano,^c D. Siliqi,^c A. Mazzone,^c N. Depalo,^b E. Fanizza,^{ab} D. Zanchet,^d C. Giannini^{*c} and M. Striccoli^{*b}

☐ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

les les

YAL SOCIE CHEMIST

GISAXS on Au nanoparticle 2D superlattices

CrystEngComm

PAPER

9482

GISAXS and GIWAXS study on self-assembling processes of nanoparticle based superlattices†

M. Corricelli, ‡^{ab} D. Altamura,‡^c M. L. Curri,^b T. Sibillano,^c D. Siliqi,^c A. Mazzone,^c N. Depalo,^b E. Fanizza, ^{ab} D. Zanchet,^d C. Giannini^{*c} and M. Striccoli^{*b}

Vertical lateral streaks indicates a 2D layer of Au nanoparticles

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

firmi leb

CNR Istituto di Cristallografia

ICC

GISAXS/GIWAXS on PbS nanoparticle 3D superlattices

CrystEngCom

Paper

🖂 cinzia.giannini@ic.cnr.it +39 080 5929167

50 nm

CNR Istituto di Cristallografia

ICDI

GISAXS/GIWAXS on 3D assembly

GIWAXS

GIWAXS measurements were performed, to account for a possible QD orientational order. This comparison does not show relevant differences for PbS2.7 sample, either in terms of peak intensity and FWHM and evidences an isotropic almost spherical shape and no preferential orientation of the QDs.

Conversely, comparing the FWHM of the (111) and (220) peaks for the PbS3.3 sample, they are slightly different as in the case of not fully isotropic QD shape.

QDs hold a slight orientational order in this sample, with the (220) planes preferentially oriented parallel to the substrate.

PbS-3.3 nm sample QD superlattice is 111-oriented and its QD building blocks are 110-preferentially oriented

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

nanoparticle 3D superlattices

⊠ cinzia.giannini@ic.cnr.it) +39 080 5929167

A superbright X-ray laboratory microsource empowered by a novel restoration algorithm

Liberato De Caro, Davide Altamura, Fabio Alessio Vittoria, Gerardina Carbone, Fen Qiao, Liberato Manna and Cinzia Giannini

J. Appl. Cryst. (2012). 45, 1228-1235

Exploiting GISAXS for the Study of a 3D Ordered Superlattice of Self-Assembled Colloidal Iron Oxide Nanocrystals

2.0

(c)

Article pubs.acs.org/crysta

Davide Altamura,[†] Václav Holý,[‡] Dritan Siliqi,[†] Indira Chaitanya Lekshmi,[§] Concetta Nobile,[®] Giuseppe Maruccio,^{§,II} P. Davide Cozzoli,^{8,II} Lixin Fan,[⊥] Fabia Gozzo,[#] and Cinzia Giannini*¹ [†]Institute of Crystallography (CNR-IC), V. Amendola 122/O, 70126-Bari, Italy

¹Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic ⁵National Nanotechnology Laboratory (NNL), CNR Istituto Nanoscienze , c/o Distretto Tecnologico, via per Arnesano km 5, 73100 Lecce, Italy

"Dipartimento di Matematica e Fisica "E. De Giorgi", Università del Salento, via per Arnesano, 73100 Lecce ¹Rigaku Innovative Technologies (RIT), 1900 Taylor Road, Auburn Hills, Michigan 48326, United States "Paul Scherrer Institut, Swiss Light Source, 5232 Villigen PSI, Switzerland

& DESIGN

CNR Istituto di Cristallografia

IC DI

🖂 cinzia.giannini@ic.cnr.it (1) +39 080 5929167

CNR Istituto di Cristallografia

IC DI

Assembly of colloidal nanocrystals in ordered super-structures is well advanced (both experimentally and theoretically):

Damasceno, P. F., et al. Science 2012, 337 (6093), 453-457

Boles, M A.. Et al., Chem.Rev.2016,116, 11220–11289

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

Highly coherent SL of perfect nanocrystals

www.acsmaterialslett.org

Wide-Angle X-ray Diffraction Evidence of Structural Coherence in CsPbBr₃ Nanocrystal Superlattices

Stefano Toso,[†] Dmitry Baranov,^{*,†}[©] Cinzia Giannini,^{*,‡}[©] Sergio Marras,[†] and Liberato Manna^{*,†}[©]

[†]Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy [‡]Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

CNR Istituto di Cristallografia

ICDI

NANOCRYSTALS NON PERIODICALLY ASSEMBLED ON TOP OF SURFACES

) +39

☐ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

CNR Istituto di Cristallografia

IC DI

Different geometries

TEM of a nanocrystal

Phase retrieval of a EDI pattern

ARTICLES PUBLISHED ONLINE: 4 APRIL 2010 | DOI: 10.1038/NNANO.2010.55 nature nanotechnology

Electron diffractive imaging of oxygen atoms in nanocrystals at sub-ångström resolution

Liberato De Caro¹, Elvio Carlino², Gianvito Caputo^{3,4}, Pantaleo Davide Cozzoli^{3,4} and Cinzia Giannini¹*

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

Keni

Phase retrieval of a EDI pattern resolution = 70 pm (0.7 Å)

TiO2 anatase nanocrystals Resolution = 0.7 Å

ARTICLES PUBLISHED ONLINE: 4 APRIL 2010 | DOI: 10.1038/NNANO.2010.55 nature nanotechnology

Electron diffractive imaging of oxygen atoms in nanocrystals at sub-ångström resolution

Liberato De Caro¹, Elvio Carlino², Gianvito Caputo^{3,4}, Pantaleo Davide Cozzoli^{3,4} and Cinzia Giannini¹*

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

CNR Istituto di Cristallografia

IC|**JI**

Nanocrystal Assembly

end-to-end assembly

☐ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

Komi Leb

CNR Istituto di Cristallografia

IC DI

CDI experiment

CDI data collected at the ID10 beamline in ESRF

Fe₂P nanorods

38 ± 12 nm / 4 ± 1 nm)

JSR RESEARCH PAPERS

J. Synchrotron Rad. (2014). 21, 594-599 https://doi.org/10.1107/S1600577514003440 Cited by 8

Three-dimensional coherent diffractive imaging on non-periodic specimens at the ESRF beamline ID10

Y. Chushkin, F. Zontone, E. Lima, L. De Caro, P. Guardia, L. Manna[®] and C. Giannini

The progress of tomographic coherent diffractive imaging with hard X-rays at the ID10 beamline of the European Synchrotron Radiation Facility is presented. The performance of the instrument is demonstrated by imaging a cluster of Fe_2P magnetic nanorods at 59 nm 3D resolution by phasing a diffraction volume measured at 8 keV photon energy. The result obtained shows progress in three-dimensional imaging of non-crystalline samples in air with hard X-rays.

Keywords: coherent diffraction imaging; phase-retrieval; randomly assembled nanostructures.

Object of the work:

investigate the assembly of magnetic rods of Fe₂P nanocrystals by Coherent Diffractive Imaging (CDI), aiming at a ₃D reconstruction of the electron density

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

CNR Istituto di Cristallografia

Coherence

REVIEWS OF MODERN PHYSICS

Accepted Paper

Materials characterization by synchrotron x-ray microprobes and nanoprobes

Rev. Mod. Phys.

Lorenzo Mino, Elisa Borfecchia, Jaime Segura-Ruiz, Cinzia Giannini, Gema Martinez-Criado, and Carlo Lamberti Accepted 4 January 2018

ABSTRACT

ABSTRACT

In the last years synchrotron x-ray microprobes and nanoprobes are emerging as key characterization tools with a remarkable impact for different scientific fields ranging from solid state physics to biology and cultural heritage. This review provides a comparison of the different probes available for the spaceresolved characterization of materials (i.e. photons, electrons, ions, neutrons) with particular emphasis on x-rays. Subsequently, an overview of the optics employed to focus x-rays and of the most relevant characterization techniques using x-rays (i.e. XRD, WAXS, SAXS, XAS, XRF, XEOL, PES) is reported. Strategies suitable to minimize possible radiation damage induced by brilliant focused x-ray beams are briefly discussed. The general concepts are then exemplified by a selection of significant applications of x-ray microbeams and nanobeams to materials science. Finally, the future perspectives for the development of nanoprobe science at synchrotron sources and free electron lasers are discussed.

> ⊠ cinzia.giannini@ic.cnr.it) +39 080 5929167

Incoherent SAXS

two scattering length scales in the sample:

Rg1 = (431.6 ± 4.1) nm P1 = 3.44 ± 0.06 (mass fractal)

Rg2 = (39.8 ± 5.5) nm P2 = 1.9 ± 0.12 (surface fractal)

Rg gyration radius P power law exponent

☐ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

CNR Istituto di Cristallografia

ICDI

Coherent SAXS

The diffraction patterns and the background were measured for 300 s each;

The collection of 73 2D diffraction patterns taken for sample tilts between -72° and +72° with a step of 2° required 24 h

☐ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

fini leb

CNR Istituto di Cristallografia

 $\mathbf{IC}|\mathbf{D}|$

Imaging 3D of the «object»

☐ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

CNR Istituto di Cristallografia

IC DI

2D comparison to SEM

imaging a cluster of Fe₂P magnetic nanorods at <u>59 nm 3D</u> resolution by phasing a diffraction volume measured at 8 keV photon energy

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

CNR Istituto di Cristallografia

ICDI

- Object of the work: investigate the dispersion of octapodshaped NCs (made of a CdSe core and eight CdS arms) embedded in ~25 μm thick polystyrene (PS) free-standing films.
- A reliable non-destructive high resolution imaging technique with the capability to penetrate µm-thick samples and with the necessary resolution to visualize nanometre-scale structures is needed. This stringent requirement rules out any electron-based microscopic technique, as they are not suited for the observation of µm thick films.

SCIENTIFIC REPORTS

OPEN Ptychographic Imaging of Branched Colloidal Nanocrystals Embedded in Free-Standing Thick Polystyrene Films

> Liberato De Caro¹, Davide Altamura^{1, *}, Milena Arciniegas^{2, *}, Dritan Siliqi¹, Mee R. Kim^{2, †}, Teresa Sibillano¹, Liberato Manna² & Cinzia Giannini¹

> > ☑ cinzia.giannini@ic.cnr.it
> > ① +39 080 5929167

CNR Istituto di Cristallografia

Accepted: 07 December 2015 Published: 18 January 2016

SCIENTIFIC REPORTS

OPEN Ptychographic Imaging of Branched **Colloidal Nanocrystals Embedded** in Free-Standing Thick Polystyrene Received: 13 January 2015 Films

Accepted: 07 December 2015 Published: 18 January 2016

Liberato De Caro¹, Davide Altamura^{1,*}, Milena Arciniegas^{2,*}, Dritan Siliqi¹, Mee R. Kim^{2,+}, Teresa Sibillano¹, Liberato Manna² & Cinzia Giannini¹

> ⊠ cinzia.giannini@ic.cnr.it) +39 080 5929167

GISAXS

GISAXS investigation ruled out any possible organization of the octapods into ordered arrays for the thin polymer films; periodic arrays were found only for the sample made from a repeatedly-washed octapod solution (no polymer), drop-casted on top of a Si₃N₄ membrane

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

Keni Leb

CNR Istituto di Cristallografia

IC

PCDI data collected at the cSAXS beamline in SLS

Ptychography allowed visualizing the selfassembly of octapods into linear and interconnected structures.

This result is in agreement with the octapod configuration observed by TEM/SEM on nanometric thin polymer samples, but never experimentally demonstrated for free-standing thick films.

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

Keni

CNR Istituto di Cristallografia

ICDI

Sample	Δφ	M _w	t _{PS}	
			[µm]	
ост	0.044		0	
PS 350	0.089	350	24±4	
PS 350_thin	0.133	350	0.307±0.010	
PS 190	0.164	190	24±4	

We explored the effect on the octapod aggregation of: *i*) different polymer film thickness for the same polymer molecular weight in the PS350_thin and PS350 samples; and *ii*) different molecular weights, for the same thickness of the polymer film in the PS350 and PS190 samples.

(b)

OCT

PS 350

0

PS 350_thin

PS 190

☑ cinzia.giannini@ic.cnr.it
 ③ +39 080 5929167

CNR Istituto di Cristallografia

ICDI

Sample	$<\Delta \phi>$	t _{PS} [μm]	$\rho_{original}[nm]$	$\rho_{averaged}[nm]$	$\rho_{averaged/filtered}[nm]$
OCT	$\left< \Delta \varphi \right>_{OCT} = 0.010 \pm 0.002$	0	49.3±1.0	41.8 ± 1.0	24.5 ± 1.0
PS350_thin	$\langle \Delta \varphi \rangle_{thin}^{PS350} = 0.030 \pm 0.002$	$0.307\pm\!0.010$	42.2 ± 1.0	36.8 ± 1.0	26.0 ± 1.0
PS350	$\langle \Delta \varphi angle_{free}^{PS350} = 0.020 {\pm} 0.002$	24 ± 4	52.5 ± 1.0	39.4±1.0	32.5 ± 1.0
PS190	$\left< \Delta \varphi \right>_{free}^{PS190} = 0.0275 {\pm} 0.002$	24 ± 4	41.9±1.0	37.4±1.0	26.2 ± 1.0

Table 1. Mean phase retardation ($<\Delta \phi>$) and polymer thickness (t_{PS}).

Averaging/deblurring/denoising allowed improving image contrast and reducing noise level in the background between octapod nanostructures. This consented to visualize the sample structures at a resolution close to the **nominal one (27 nm)**.

□ cinzia.giannini@ic.cnr.it
 ① +39 080 5929167

Conclusions

- Colloidal nanomaterials have been used for major technological advances.
- Examples of diffraction/imaging studies have been shown on
 - Nanomaterials in solutions >> SAXS/WAXS
 - Nanomaterials in powders, solid state >> WAXS/XRD
 - Nanomaterials assembled onto surfaces >> GISAXS GIWAXS
 - Nanomaterials diluted in thick polymers >> Ptychography/CDI
 - Single Nanomaterials >> EDI

□ cinzia.giannini@ic.cnr.it
 □ +39 080 5929167

Nanocrystals for medicine: multiple functions within one system possible

Nanostructured particles

Table 1

List of nanostructured particles associated with the human body.

Nanostructure	Size	Ref.
glucose	1 nm	[244]
DNA	2.2–2.6 nm	[245]
average size of protein (rubisco monomer)	3–6 nm	[<u>246]</u>
haemoglobin	6.5 nm	[<u>244]</u>
micelle	13 nm	[<u>244]</u>
ribosomes	25 nm	[<u>247]</u>
enzymes and antibodies	2–200 nm	[<u>248]</u>

Beilstein J Nanotechnol. 2018; 9: 1050–1074. Published online 2018 Apr 3. doi: <u>10.3762/bjnano.9.98</u> PMCID: PMC5905289 PMID: 29719757

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

Jaison Jeevanandam,¹ Ahmed Barhoum,^{III} Yen S Chan,¹ Alain Dufresne,⁴ and Michael K Danquah^{III}

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

ICDI

Bio-Ptychography

Scientific Reports 7, Article number: 445 (2017)

Combined x-ray fluorescence and ptychographic imaging of a frozen hydrated *Chlamydomonoas reinhardtii* alga: single cup-shaped chloroplast (Ch), as well as a number of other organelles: pyrenoid (Py), nucleus (N), starch granule (Sg), and polyphosphate bodies (Ph).

0.84 (rad)

> IC DI CNR Istituto di Cristallografia

□ cinzia.giannini@ic.cnr.it
① +39 080 5929167

Bio-Ptychography

Scientific Reports 7, Article number: 445 (2017)

Fluorescence and ptychographic x-ray images of a second unsectioned frozenhydrated *Chlamydomonas* alga: The 5.2 keV x-ray ptychographic phase contrast image (**b**) shows unlabeled subcellular structures, including a big pyrenoid (Py). Because the fluorescence and ptychographic image data are recorded simultaneously, the various images are in perfect registry.

☑ cinzia.giannini@ic.cnr.it
① +39 080 5929167

CNR Istituto di Cristallografia

ICDI

Perspectives?

- Use of IV generation synchrotron sources with higher brilliance and coherence are extremely important
- Multiple techniques beamlines are extremely important
- to address the problem of incoherent assembly of nanocrystals in cells, in tissues, in soft matter

☑ cinzia.giannini@ic.cnr.it
☑ +39 080 5929167

CNR Istituto di Cristallografia

Acknowledgements for coherent related work

- CNR Bari/Lecce (Italy)
- L. De Caro, E. Carlino, D. Siliqi, D. Altamura
- IIT Genova (Italy) L. Manna, D. Baranov, S. Toso, M. Arciniegas, M. Prato
- Nanotec Lecce (Italy) D. P. Cozzoli
- ESRF Grenoble (France) F. Zontone, Y. Yuskin
- SLS (Switzerland)
- A. Diaz, A. Menzel

🖂 cinzia.giannini@ic.cnr.it) +39 080 5929167

CNR Istituto di Cristallografia