STATUS OF THE NANO-IMAGING BEAMLINE ID16A

P. Cloetens ID16A

cloetens@esrf.eu jdasilva@esrf.eu

S. Bohic², J.C. da Silva, A. Pacureanu, M. Salome, Y. Yang

ESRF, Grenoble ²INSERM U-836 Grenoble

ID16A-NI: NANO-IMAGING BEAMLINE

ID16A-NI

185 m

ESRF

Upgrade Programme

Quantitative 3D characterization at the nanoscale of the morphology and the elemental composition of specimens in their native state

ID16A End-station

Optics Hutch

34 m

X-RAY PHASE CONTRAST

X-RAY FLUORESCENCE

The European Synchrotron ESRF

COMBINED PHASE AND X-RAY FLUORESCENCE

The European Synchrotron

ID16A-NI: NANO-IMAGING BEAMLINE

THE INSTRUMENT

Focused X-ray Nanoprobe X-ray fluorescence & phase contrast Focus ~ 12-50 nm Flux 4 10¹¹ ph/s at Δ E/E =1% E = 17 keV or 33.6 keV In-vacuum + Cryo

ID16A

CRYOGENIC WORKFLOW FOR BIOLOGICAL SAMPLES

Preserve biological samples close to their native state (frozen hydrated)

- Avoid redistribution of elements, morphological changes
- Avoid (limit) radiation damage

P. van der Linden , S. Bohic, F. Villar, L. Andre The European Synchrotron

CRYOGENIC WORKFLOW FOR BIOLOGICAL SAMPLES

Leica EM-VCT Cryo-transfer system

Integrated into the "Hexapiezo" Highly precise and stable rotation (<20nm) and scanning (<5nm)

CRUMPLING OF SILVER NANOWIRES BY ENDOLYSOSOMES STRONGLY REDUCES TOXICITY

S Lehmann, A E Prada, L Charlet, B Gilbert (LBNL) et al, PNAS, 116, 14893 (2019)

CRYO CORRELATIVE LIGHT X-RAY MICROSCOPY

FRESNEL PROJECTION MICROSCOPY: ULTIMATE RESOLUTION

Factors limiting the spatial resolution:

Fresnel diffraction : $1/2\sqrt{\lambda D}$ Phase retrieval through *phase diversity*

Different distances

Near-field ptychography (M Stockmar et al, Scientific Reports, 2013)

Incoherent contributions to the nanofocus

Mechanical vibrations

 $\mu_{12}(\lambda D f)$

Electron source size

Not just brightness, coherence limited

1 nm contribution, demagn. 1000 \rightarrow 1 μm source size

DEPTH OF FIELD AT HIGH RESOLUTION

RADIATION DAMAGE AND DOSE AT HIGH RESOLUTION

- Fast freezing and cryo-microscopy partially solves the issue
- <u>XRF</u> (50ms dwell-time):

2D: ~10¹⁰ Gy @ 20nm pixel

3D: 2 10⁹ Gy @ 120nm voxel

 <u>Holographic nanotomography</u> (200ms exp.): 3D: 10⁸ Gy @ 10nm voxel

- Ideally suited for the production of round, pink nano-beams
- Increase by about 30 of flux density, 25 of flux, >1013 ph/s!!!
- Spectral bandwidth from $1\% \rightarrow 0.7\%$
- Further decrease of focal spot size is mostly optics limited
- Improved spatial resolution and sensitivity in coherent imaging (better coherence and higher flux)

2.3 m Revolver support

Huge 3D problems

e.g. Connectomics (1mm³ brain with 'synaptic resolution')

Correlative (X-ray) microscopy

- Online: Phase & Fluo
- Offline: Cryo CLXM & (cryo-)EM

- End-station currently dismantled!
- Faster nano-positioning

New faster in-vacuum rotation and improved cryo-environment

- New KB Vertical Focusing Mirror @ 17 keV
- Imaging detector:

faster (sCMOS) and larger (2K x 2K \rightarrow 4K x 4K or 6K x 6K)

- Homogeneity of software
 in the frame of ESRF Tomography Strategy
- Sample preparation
- Dose management

• ...

