New Opportunities to Unveil Glass Dynamics with X-ray Photo Correlation Spectroscopy at ESRF-EBS

Giacomo Baldi

Department of Physics, University of Trento, Italy

Outline

- WA XPCS Introduction
- Dynamics of the glassy state
- Beam-induced dynamics
- New opportunities at ESRF-EBS

Unique method to measure the Q-resolved dynamics of glasses and supercooled liquids

Wide Angle - XPCS

$$g_2(Q,t) = \frac{\left\langle I(Q,0)I(Q,t)\right\rangle}{\left\langle I(Q)\right\rangle^2} = 1 + A(Q)\left|F(Q,t)\right|^2$$

Contrast:

$$A(Q_{FSDP}) \sim 1 - 5 \%$$

Typical correlation curve at wide angles

Signal to noise ratio:

$$SNR \sim A \cdot \bar{I} \cdot \sqrt{T \cdot dt \cdot N_p}$$

 \overline{I} : count rate per pixel T: total duration of the measurement dt: accumulation time per frame N_p : number of detector pixels

Outline

- WA XPCS Introduction
- Dynamics of the glassy state
 - Metallic glasses
 - Oxide glasses
- Beam-induced dynamics
- New opportunities at ESRF-EBS

Physical aging in colloidal glasses

Aggregating polystyrene colloids

• Fast aging regime

Cipelletti, Manley, Ball, Weitz, Phys. Rev. Lett. 2000.

 $\tau \sim q^{-2}$ $\beta = 1$

Physical aging in colloidal glasses - II

Theoretical insight

Eur. Phys. J. E 9 , 287–291 (2002) DOI 10.1140/epje/i2002-10075-3	The European Physical Journal E	JP. Bouchaud and E. Pitard, 2002
Anomalous dynamical light scattering	in soft glassy gels	
JP. Bouchaud ^{1,a} and E. Pitard ²		
 ¹ Service de Physique de l'État Condensé, Centre d'études de Saclay, Ori ² Laboratoire de Physique Mathématique et Théorique, Université Montperieure 	ne des Merisiers, 91191 Gif-sur-Yvette Cedex, France pellier II, UMR 5825, France	
Received 15 April 2002 / Published online: 23 December 2002 – © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2002		
Abstract. We compute the dynamical structure factor $S(q, \tau)$ of an elastic medium where force dipoles appear at random in space and in time, due to "micro-collapses" of the structure. Various regimes are found, depending on the wave vector q and the collapse time θ . In an early time regime, the logarithm of the structure factor behaves as $(q\tau)^{3/2}$, as predicted in (L. Cipelletti <i>et al.</i> , Phys. Rev Lett. 84 , 2275 (2000)) using heuristic arguments. However, in an intermediate-time regime we rather obtain a $(q\tau)^{5/4}$ behaviour. Finally, the asymptotic long-time regime is found to behave as $q^{3/2}\tau$. We also give a plausible scenario for aging, in terms of a strain-dependent energy barrier for micro-collapses. The relaxation time is found to grow with the age t_w , quasi-exponentially at first, and then as $t_w^{4/8}$ with logarithmic corrections.		
PACS. 82.70.Gg Gels and sols – 81.40.Cd Solid solution hardening, precipitation hardening, and dispersion hardening; aging		

Appearance of **random collapses** in the glassy gel, with a rate which is thermally activated

Agreement with experiment if the **measuring time is small** compared to the collapse-time

Physical aging in colloidal glasses - III

1.5

Numerical simulations:

Chaudhuri, Berthier, *Phys. Rev. E* 2017.

XPCS of metallic glasses

B. Ruta, G. Baldi, G. Monaco, and Y. Chushkin, J. Chem. Phys. 138, 054508 (2013)

XPCS of metallic glasses

Metallic glasses produced by a fast quench: $\sim 10^6$ K/s

Fast aging regime:

B. Ruta, G. Baldi, G. Monaco, and Y. Chushkin, J. Chem. Phys. 138, 054508 (2013)

XPCS of oxide glasses

B. Ruta, G. Baldi et al., Nat. Commun. 5, 3939 (2014)

Outline

- WA XPCS Introduction
- Dynamics of the glassy state
- Beam-induced dynamics
 - Vitreous silica
 - Vitreous boron oxide
- New opportunities at ESRF-EBS

XPCS of oxide glasses – beam effect

Vitreous silica

Room temperature, Q = 1.5 Å⁻¹

 $\begin{array}{ll} F_{0} \approx 1 \cdot 10^{11} \mbox{ ph/s} & (\mbox{red}) \\ F_{1} \approx 3 \cdot 10^{10} \mbox{ ph/s} & (\mbox{orange}) \\ F_{2} \approx 1.2 \cdot 10^{10} \mbox{ ph/s} & (\mbox{cyan}) \\ F_{3} \approx 3.6 \cdot 10^{9} \mbox{ ph/s} & (\mbox{blue}) \end{array}$

Ruta et al., Sci. Rep. 7, 3962 (2017)

Beam induced dynamics - I

The observed beam-induced effect is reversible

v-SiO₂

Ruta et al., Sci. Rep. 7, 3962 (2017)

Beam induced dynamics - II

Beam induced dynamics - III

The decorrelation time scales with the inverse flux over two decades in flux

The decorrelation time shows a clear Q-dependence

Ruta et al., Sci. Rep. 7, 3962 (2017)

Beam induced dynamics - IV

Metallic glasses appear to be immune to beam-induced effects. Radiolysis?

Ruta et al., Sci. Rep. 7, 3962 (2017)

Beam induced dynamics $-v-B_2O_3$

 $v-B_2O_3$

The τ_{α} and τ_{χ} seem independent:

Beam induced dynamics $-v-B_2O_3$

 N_{tot} = number of B₂O₃ units in the scattering volume A number ~ $\frac{N_{tot}}{\rho}$ of B₂O₃ units move in a time τ_X

$$N_u = \frac{\# \text{ units that move in } \tau_X}{\# \text{ photons absorbed in } \tau_X} = \frac{1}{e} \frac{N_{tot}}{\tau_X < F >_a}$$

Number of B_2O_3 units that move after the absorption of 1 X-ray photon

G. Pintori, G. Baldi, B. Ruta, G. Monaco, Phys. Rev. B 99, 224206 (2019)

Recent improvements

Vitreous B₂O₃

CCD detector: dt > 1 s

Recent improvements

Vitreous B₂O₃

Eiger detector at ESRF-ID10

$$\tau = (3.9 \pm 0.1) \text{ s}$$

 $\beta = 0.81 \pm 0.03$

Parameters of the measurement:

dt = **50 ms** 20 x 10000 images Total duration ~ 3 hours

A. Martinelli et al., in preparation

Recent improvements

B₂O₃ Supercooled liquid

Eiger detector at ESRF-ID10

 $\tau = (1.8 \pm 0.1) \text{ s}$ $\beta = 0.65 \pm 0.04$

Parameters of the measurement:

dt =**20 ms** 70 x 10000 images Total duration ~ 4h

Difficult to measure $\tau < 1$ s

A. Martinelli et al., in preparation

Outline

- WA XPCS Introduction
- Dynamics of the glassy state
- Beam-induced dynamics
- New opportunities at ESRF-EBS
 - From microscopic to macroscopic
 - Dynamics of supercooled liquids
 - Link with vibrational dynamics
 - Nano-focusing
 - Dynamical heterogeneities
 - Stress relaxation
 - Extreme conditions (HP HT)

Connecting the microscopic and macroscopic dynamics ²⁴

Probing the liquid dynamics

Dynamics of supercooled liquids

THE JOURNAL OF CHEMICAL PHYSICS 132, 104503 (2010)

Subquadratic wavenumber dependence of the structural relaxation of supercooled liquid in the crossover regime

Sarika Maitra Bhattacharyya,¹ Biman Bagchi,^{1,a)} and Peter G. Wolynes²

dent of q. As discussed earlier, the quadratic wavenumber dependence $(\tau(q) \propto 1/q^2)$ is a signature of the continuous Brownian diffusion and the weak wavenumber dependence $(\tau(q) \propto 1/q^{\alpha})$ is a signature of discontinuous activated hopping.

Theoretical model

FIG. 1. The α relaxation timescale $\tau(q)$ plotted as a function of q at different densities and temperatures. The $\tau(q)$ values are scaled such that at q = 8.6 they have similar values. $\tau(q)$ shows a weaker q dependence as the temperature is lowered.

Dynamics of supercooled liquids

MD simulations

PHYSICAL REVIEW LETTERS 122, 175501 (2019)

q-Independent Slow Dynamics in Atomic and Molecular Systems

Philip H. Handle,¹ Lorenzo Rovigatti,^{1,2,*} and Francesco Sciortino¹ ¹Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy ²CNR-ISC, UoS Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy

(Received 1 August 2018; published 3 May 2019)

Investigating million-atom systems for very long simulation times, we demonstrate that <u>the collective</u> <u>density-density correlation time</u> (τ_{α}) in simulated supercooled water and silica becomes wave-vector independent (q⁰) when the probing wavelength is several times larger than the interparticle distance.

Giacomo Baldi - New Opportunities to Unveil Glass Dynamics with X-ray Photo Correlation Spectroscopy at ESRF-EBS, Grenoble 9/2019

Link with vibrational dynamics

Non-ergodicity parameter in the harmonic approximation:

Link with vibrational dynamics

<u>Non-ergodicity parameter in the harmonic approximation:</u>

 α parameter corrected for the presence of secondary relaxations

Growing length scales approaching T_g?

Numerical simulations

 $T \gtrsim T_g$

Regions of high and low mobility **Dynamical correlation length**

 $T \gtrsim T_g$

Static length scale

Clustering of the bond orientational order parameter

 $T < T_g$

Elastic heterogeneities Local shear modulus

A. S. Keys *et al.*, Phys. Rev. X 1, 021013 (2011).
H. Tanaka *et al.*, Nat. Mater., 9, 324 (2010).
K. Yoshimoto *et al.*, Phys. Rev. Lett. 93, 175501 (2004).

Nanofocusing -> dynamical heterogeneities

Aging Laponite colloidal solution, DLS setup

Scattering volume ~ 1 μ m³, with ~10⁴ particles

The four-point susceptibility shows a peak when $N_{corr} \simeq 10 - 100$

 $\lesssim 1000$ independent regions in the scattering volume

C. Maggi et al., Phys. Rev. Lett. 109, 097401 (2012)

Nanofocusing -> stress relaxation

$Zr_{53}Cu_{36}Al_{11}$ hyper-quenched metallic glass

Scale bar, 5 nm

Nanoscale spatial heterogeneity observed by HRTEM. The typical size evolve during annealing

F. Zhu et al., Nat. Commun. 9, 3965 (2018)

Dynamics at Extreme Conditions

Dynamical evolutions during polyamorphic transitions

XPCS of nucleation in magmas

Realistic conditions (HT-HP, chaotic mixing,...).

Conclusions

- Fast **aging** regime and compressed corr. functions in fast quenched metallic glasses
- **Structural** relaxation of oxides accessible only if faster than the beam induced decorrelation
- Many new exciting possibilities exploiting the improved coherent flux of ESRF-EBS

Thank you!

Aknowledgments

- Federico Caporaletti
- Alessandro Martinelli
- Giulio Monaco
- Giovanna Pintori
- Marco Zanatta

Beatrice Ruta

- Yuri Chushkin
- Federico Zontone

• Francesco Dallari

Benoit Rufflé