

The European Synchrotron

New DCM for spectroscopy an engineering challenge review

<u>Y. Dabin</u>, R. Baker, L. Zhang, H. Gonzalez, R. Barrett, Ph. Marion, O. Mathon, R. Tucoulou

DRIVERS FOR A NEW DCM: GENERAL OUTLINES

THE CRYSTALS CONFIGURATIONS

CRYSTAL POSITIONING: PLACING THE CENTRE OF ROTATION

CRYSTAL POSITIONING – CENTRE OF ROTATION LOCATION

A LOT OF CRYSTALS COMBINATIONS POSSIBLE

THE CRYSTAL PARALLELISM : THE FUNDAMENTAL ISSUE

Crystal parallelism is the fundamental performance of any DCM

Drivers	items	characteristic	cure	Studies drivers
Geometric	Moving stages	~ repeat	Metrology- lookup table Piezos	Static studies
	Plate deformation	~ repeat		
Cryo-field from crystal set	Stage shrinkage	instability	Thermal break heater (TTF)	Thermal studies & Simulating Thermal transfer Function
Thermal field from scattering	Stages and holders	instability	Radiation shield Heater (TTF)	
Crystals at different temp.	Crystal Cryo- box	Lack of cooling power rate. Response time	LN2 on 2 nd crystal	
Dynamics	Moving stages Flexures	Fast events	Push dynamic studies-high frequency track	Vibration analysis

CRYSTAL CAGE PARALLELISM : THE ROTATING PLATE AND TRAVEL CASES

The European Synchrotron

REMARK: RADIAL MOVE MAY BE OF LESS IMPORTANCE

Parallelism error ≤ 100 nrd <mark>during scans</mark>				
The error is lower than the limit	Strategy when the error is above the limit (100 nrd)			
Metrology in situ possible. watch	Error is repeatable (RT + cryo)	Error is not repeatable		
Probably Probe system	Corrected within Mono Fine stages Probes (Look-up table+ Piezo strain gauges) 	Corrected in real time Probe system (straight edge+ capacitor) Dynamic TF with piezos		
No correction (ideal case!)	Corrected externally			
Recent mono May be there	Minimum requirements With still a simple system	Complex system Would require developments		

CRYSTAL PARALLELISM : AVOID MECHANISM THERMAL SHRINKAGE

ESRF

THE BRAGG AXIS MOTOR CASE

LN2 FEEDER BOX: A "HEAVY INFLUENCE", MAY BE AWAY FROM SUPPLIER'S

BRAGG AXIS DYNAMICS

BRAGG AXIS DYNAMICS

Adding a counterweight improves Unpowered reaction but magnifies The dynamic considerations

Typically from 40 to 60 Kg.m²

Added external Counterweight: 30 Kg @ 700 mm

MOTOR DYNAMIC OPERATION

BRAGG AXIS : REQUIRED TORQUE FOR ENERGY SCANNING

SPACE – VELOCITY – ACCELERATION – AND TORQUE

STABILITY ISSUES: OUTLINES

GLOBAL VIBRATION CURING

- "Pillar like jacks" removed everywhere Base block bonded to floor

Typical stand weaknesses

Older BM29 mono – 2008 – Courtesy M. lesourd

LATERAL MOVE TRANSFER FUNCTION: UPGRADING A KOHZU STAND AT ID14

TWO MONOS IN TEST AT THE ESRF ID6- (IN 2008)

The European Synchrotron ESRF

FLEXURE DESIGN: VERY HARD TO BE PERFECT MODAL ANALYSIS

SINGLE DOF FLEXURE BASED GONIOMETER

The problem to address is the availability of single DoF high resolution goniometer (low parasitic motion)

> 130Hz loaded at 30 Kg White beam mirror ESRF upgrade Not easy to implement for A crystal set

RESULTS: SCATTERED POWER ON FIRST CRYSTAL

The scattered power has been calculated using "Penelope" code Here input power is 150 W

The scattered power (fraction of energy irradiated) has been calculated using the incident white bending magnet spectrum shown. It is always less than 25% and less than 5-8% for usual Bragg angles (> 3 deg)

The European Synchrotron

TYPICAL SCATTERING SHIELDING

Ceramic thermal break

Global side Screen Shielding the Positioning Mechanisms 5 mm copper Local tungsten screens are 1 mm

NEW DCM FOR SPECTROSCOPY AN ENGINEERING CHALLENGE REVIEW

We a far from being blocked Still many issues

