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What is asyn and why to we need it?
EPICS IOC architectureMotivation

•Standard EPICS 
interface between 
device support and 
drivers is only 
loosely defined

•Needed custom 

Well defined

Well defined
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•Needed custom 
device support for 
each driver

•asyn provides 
standard interface 
between device 
support and device 
drivers

•And a lot more too!

Pretty well defined

Poorly defined

Well defined



History – why the name asyn
• asyn replaces earlier APS packages called HiDEOS and MPF (Message Passing 

Facility)
• The initial releases of asyn were limited to “asynchronous” devices (e.g. slow 

devices)
– Serial
– GPIB
– TCP/IP

• asyn provided the thread per port and queuing that this support needs.
• Current version of asyn is more general, synchronous (non-blocking) drivers 

are also supported.
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are also supported.
• We are stuck with the name, or re-writing a LOT of code!

Independent of EPICS
• asyn is actually independent of EPICS (except for optional device support and 

asynRecord).  
• It only uses libCom from EPICS base for OS independence in standard utilities 

like threads, mutexes, events, etc.
• asyn can be used in code that does not run in an IOC

– asyn drivers could be used with Tango or other control systems



asyn Architecture

Device support (or SNL code, 
another driver, or non-EPICS 

software)

Port (named object) 

Interfaces (named; 
pure virtual functions)

asynCommon 
(connect, report, …)

asynOctet (write, 
read, setInputEos,…)

SLAC asyn class, Day 1, August 26, 2010 

device device

Port (named object) 

Port driver

addr=0 addr=1



Control flow – asynchronous driver
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Control flow – synchronous driver
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asynManager – Methods for drivers
• registerPort

– Flags for multidevice (addr), canBlock, isAutoConnect
– Creates thread for each asynchronous port (canBlock=1)

• registerInterface
– asynCommon, asynOctet, asynInt32, etc.

• registerInterruptSource, interruptStart, interruptEnd
• interposeInterface – e.g. interposeEos, interposeFlush
• Example code:
pPvt->int32Array.interfaceType = asynInt32ArrayType;
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pPvt->int32Array.interfaceType = asynInt32ArrayType;

pPvt->int32Array.pinterface  = (void *)&drvIp330Int32Array;

pPvt->int32Array.drvPvt = pPvt;

status = pasynManager->registerPort(portName,  

ASYN_MULTIDEVICE, /*is multiDevice*/ 

1,  /*  autoconnect */  

0,  /* medium priority */      

0); /* default stack size */

status = pasynManager->registerInterface(portName,&pPvt->common);

status = pasynInt32Base->initialize(pPvt->portName,&pPvt->int32);

pasynManager->registerInterruptSource(portName, &pPvt->int32, 

&pPvt->int32InterruptPvt);



asynManager – Methods for Clients
(e.g. Device Support)

• Create asynUser
• Connect asynUser to device (port)
• Find interface (e.g. asynOctet, asynInt32, etc.)
• Register interrupt callbacks
• Query driver characteristics (canBlock, isMultidevice, 

SLAC asyn class, Day 1, August 26, 2010 

• Query driver characteristics (canBlock, isMultidevice, 
isEnabled, etc).

• Queue request for I/O to port
– asynManager calls callback when port is free

• Will be separate thread for asynchronous port

– I/O calls done directly to interface methods in driver
• e.g. pasynOctet->write()



asynManager – Methods for Clients
(e.g. Device Support)

Example code:

/* Create asynUser */

pasynUser = pasynManager->createAsynUser(processCallback, 0);

status = pasynEpicsUtils->parseLink(pasynUser, plink,

&pPvt->portName, &pPvt->addr, &pPvt->userParam);

status = pasynManager->connectDevice(pasynUser, pPvt->portName, pPvt->addr);
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status = pasynManager->canBlock(pPvt->pasynUser, &pPvt->canBlock);

pasynInterface = pasynManager->findInterface(pasynUser, asynInt32Type, 1);

status = pasynManager->queueRequest(pPvt->pasynUser, 0, 0);

In processCallback()

status = pPvt->pint32->read(pPvt->int32Pvt, pPvt->pasynUser, &pPvt->value);



asynManager – asynUser
• asynUser data structure.  This is the fundamental “handle” used by asyn

asynUser = pasynManager->createAsynUser(userCallback queue, 
userCallback timeout);

asynUser = pasynManager->duplicateAsynUser)(pasynUser, 
userCallback queue, 
userCallback timeout);

typedef struct asynUser {
char *errorMessage;
int errorMessageSize;
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int errorMessageSize;
/* The following must be set by the user */
double       timeout;  /* Timeout for I/O operations */
void         *userPvt;
void         *userData;
/* The following is for user to/from driver communication */
void         *drvUser;
/* The following is normally set by driver */
int          reason;
/* The following are for additional information from method calls */
int          auxStatus; /* For auxillary status /

} asynUser;



Standard Interfaces
Common interface, all drivers must implement

• asynCommon: report(), connect(), disconnect()
I/O Interfaces, most drivers implement one or more

• All of these have write(), read(), registerInteruptUser() and 
cancelInterruptUser() methods

• asynOctet: flush(), setInputEos(), setOutputEos(), getInputEos(), 
getOutputEos()

• asynInt32: getBounds()
• asynInt8Array, asynInt16Array, asynInt32Array:
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• asynInt8Array, asynInt16Array, asynInt32Array:
• asynUInt32Digital:
• asynFloat64:
• asynFloat32Array, asynFloat64Array: 

Miscellaneous interfaces
• asynOption: setOption() getOption()
• asynGpib:  addressCommand(), universalCommand(), ifc(), ren(), etc.
• asynDrvUser: create(), free()



Support for Callbacks (Interrupts)

• The standard interfaces asynOctet, asynInt32, 
asynUInt32Digital, asynFloat64 and asynXXXArray all 
support callback methods for interrupts

• registerInterruptUser(…,userFunction, userPrivate, …)
– Driver will call userFunction(userPrivate, pasynUser, data) 

whenever an interrupt occurs
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whenever an interrupt occurs
– Callback will not be at interrupt level, so callback is not restricted 

in what it can do

• Callbacks can be used by device support, other drivers, etc.
• Current interrupt drivers

– Ip330 ADC, IpUnidig binary I/O, quadEM APS quad electrometer, 
areaDetector drivers

– Acromag IP440/IP445, HMS simulators for labs



• Ip330 ADC driver.  Digitizing 16 channels at 1kHz.

• Generates interrupts at 1 kHz.

• Each interrupt results in:
– 16 asynInt32 callbacks to devInt32Average generic device support

– 1 asynInt32Array callback to fastSweep device support for MCA 

Support for Interrupts – Performance
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– 1 asynInt32Array callback to fastSweep device support for MCA 
records

– 1 asynFloat64 callback to devEpidFast for fast feedback

• 18,000 callbacks per second

• 21% CPU load on MVME2100 PPC-603 CPU with 
feedback on and MCA fast sweep acquiring.



Generic Device Support
• asyn includes generic device support for many standard EPICS records and 

standard asyn interfaces
• Eliminates need to write device support in many cases.  New hardware can 

be supported by writing just a driver.
• Record fields:

– field(DTYP, “asynInt32”)
– field(INP, “@asyn(portName, addr, timeout) drvInfoString)

• Examples:
– asynInt32
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– asynInt32
• ao, ai, bo, bi, mbbo, mbbi, longout, longin

– asynInt32Average
• ai

– asynUInt32Digital, asynUInt32DigitalInterrupt
• bo, bi, mbbo, mbbi, mbboDirect, mbbiDirect, longout, longin

– asynFloat64
• ai, ao

– asynOctet
• stringin, stringout, waveform

– asynXXXArray
• waveform (in and out)



Generic Device Support
• The following synApps modules all now use standard asyn 

device support, and no longer have specialized device 
support code:
– Ip330 ADC

– IpUnidig

– quadEM
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– quadEM

– dac128V

– Canberra ICB modules (Amp, ADC, HVPS, TCA)

• MCA and motor records use special device support, 
because they are not base record types

• However, the MCA and new motor drivers now only use 
the standard asyn interfaces, so it is possible to write a 
database using only standard records and control any MCA 
driver or new motor driver



asynRecord
• EPICS record that provides 

access to most features of asyn, 
including standard I/O interfaces

• Applications:
– Control tracing (debugging)

– Connection management
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– Perform interactive I/O

• Very useful for testing, 
debugging, and actual I/O in 
many cases

• Replaces the old generic “serial” 
and “gpib” records, but much 
more powerful



Synchronous interfaces
• Standard interfaces also have a synchronous interface, even 

for slow devices, so that one can do I/O without having to 
implement callbacks

• Example: asynOctetSyncIO
– write(), read(), writeRead()

• Very useful when communicating with a device that can 
block, when it is OK to block

SLAC asyn class, Day 1, August 26, 2010 

block, when it is OK to block
• Example applications:

– EPICS device support in init_record(), (but not after that!)
– SNL programs, e.g. communicating with serial or TCP/IP ports
– Any asynchronous asyn port driver communicating with an 

underlying asynOctet port driver (e.g. motor drivers)
– HMS simulator port driver for lab
– areaDetector driver talking to marCCD server, Pilatus camserver, 

etc.
– iocsh commands



Tracing and Debugging
• Standard mechanism for printing diagnostic 

messages in device support and drivers
• Messages written using EPICS logging facility, 

can be sent to stdout, stderr, or to a file.
• Device support and drivers call:

– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len, 

format, ...)
– Reason:
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– Reason:
• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW

• Tracing is enabled/disabled for (port/addr)
• Trace messages can be turned on/off from 

iocsh, vxWorks shell, and from CA clients 
such as medm via asynRecord.

• asynOctet I/O from shell



Fast feedback device support (epid record)

• Supports fast PID control

• Input: any driver that 
supports asynFloat64 with 
callbacks (e.g. callback on 
interrupt)

• Output: any driver that 
supports asynFloat64.
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supports asynFloat64.

• In real use at APS for 
monochromator feedback 
with IP ADC/DAC, and 
APS VME beam position 
monitor and DAC

• >1kHz feedback rate



asynPortDriver

• New C++ base class that greatly simplifies writing an 
asyn port driver
– Initially developed as part of the areaDetector module

– Moved from areaDetector into asyn itself in asyn 4-11

– All of my areaDetector, D/A, binary I/O, and most recently 

SLAC asyn class, August 26, 2010

– All of my areaDetector, D/A, binary I/O, and most recently 
motor drivers now use asynPortDriver

– The 2 drivers I’ve written for this class (Acromag IP440/IP445 
binary I/O and HMS simulator) use asynPortDriver

• Hides all details of registering interfaces, registering 
interrupt sources, doing callbacks, default connection 
management



asynPortDriver C++ Base Class
• Parameter library

– Drivers typically need to support a number of parameters that control 
their operation and provide status information. Most of these can be 
treated as int32, int32Digital, float64, or strings. Sequence on new value:

• New parameter value arrives, or new data arrives from device
• Change values of one or more parameters
• For each parameter whose value changes set a flag noting that it changed
• When operation is complete, call the registered callbacks for each changed 

parameter

• asynPortDriver provides methods to simplify the above 
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• asynPortDriver provides methods to simplify the above 
sequence

– Each parameter is assigned an index based on the string passed to the 
driver in the drvUser interface

– asynPortDriver has table of parameter values, with data type/asyn 
interface (int32, float32, etc.), caches the current value, maintains 
changed flag 

– Drivers use asynPortDriver methods to read the current value from the 
table, and to set new values in the table. 

– Method to call all registered callbacks for values that have changed since 
callbacks were last done. 



asynPortDriver C++ Methods
virtual asynStatus readInt32(asynUser *pasynUser, epicsInt32 

*value);
virtual asynStatus writeInt32(asynUser *pasynUser, epicsInt32 

value);
virtual asynStatus readFloat64(asynUser *pasynUser, epicsFloat64 

*value);
virtual asynStatus writeFloat64(asynUser *pasynUser, epicsFloat64 

value);
virtual asynStatus readOctet(asynUser *pasynUser, char *value, 

size_t maxChars, size_t *nActual, int *eomReason);
virtual asynStatus writeOctet(asynUser *pasynUser, const char 

*value, size_t maxChars, size_t *nActual);
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virtual asynStatus writeOctet(asynUser *pasynUser, const char 
*value, size_t maxChars, size_t *nActual);

• Drivers typically don’t need to implement the readXXX functions, base 
class takes care of everything, i.e. get cached value from parameter library

• Need to implement the writeXXX methods if any immediate action is 
needed on write, otherwise can use base class implementation which just 
stores parameter in library



asynPortDriver C++ Constructor
asynPortDriver(const char *portName, int maxAddr, 

int paramTableSize, int interfaceMask, 
int interruptMask, int asynFlags, int autoConnect, 
int priority, int stackSize);

portName: Name of this asynPort
maxAddr: Number of sub-addresses this driver supports (typically 1)
paramTableSize: Number of parameters this driver supports
interfaceMask: Bit mask of standard asyn interfaces the driver supports
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interfaceMask: Bit mask of standard asyn interfaces the driver supports
interruptMask: Bit mask of interfaces that will do callbacks to device support
asynFlags:  ASYN_CANBLOCK, ASYN_MULTIDEVICE
autoConnect: Yes/No
priority: For port thread if ASYN_CANBLOCK
stackSize: For port thread if ASYN_CANBLOCK

Based on these arguments base class constructor takes care of all details of registering 
port driver, registering asyn interfaces,  registering interrupt sources, and creating 
parameter library.



Summary- Advantages of asyn
• Drivers implement standard interfaces that can be accessed from:

– Multiple record types
– SNL programs
– Other drivers

• Generic device support eliminates the need for separate device support in 
90% (?) of cases
– synApps package 10-20% fewer lines of code, 50% fewer files with asyn

• Consistent trace/debugging at (port, addr) level
• asynRecord can be used for testing, debugging, and actual I/O applications
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• asynRecord can be used for testing, debugging, and actual I/O applications
• Easy to add asyn interfaces to existing drivers:

– Register port, implement interface write(), read() and change debugging output
– Preserve 90% of driver code

• asyn drivers are actually EPICS-independent.  Can be used in any other 
control system.


