
asyn: An Interface Between
EPICS Drivers and Clients

SLAC asyn class, Day 1, August 26, 2010

Mark Rivers, Marty Kraimer, Eric Norum

University of Chicago

Advanced Photon Source

What is asyn and why to we need it?
EPICS IOC architectureMotivation

•Standard EPICS
interface between
device support and
drivers is only
loosely defined

•Needed custom

Well defined

Well defined

SLAC asyn class, Day 1, August 26, 2010

•Needed custom
device support for
each driver

•asyn provides
standard interface
between device
support and device
drivers

•And a lot more too!

Pretty well defined

Poorly defined

Well defined

History – why the name asyn
• asyn replaces earlier APS packages called HiDEOS and MPF (Message Passing

Facility)
• The initial releases of asyn were limited to “asynchronous” devices (e.g. slow

devices)
– Serial
– GPIB
– TCP/IP

• asyn provided the thread per port and queuing that this support needs.
• Current version of asyn is more general, synchronous (non-blocking) drivers

are also supported.

SLAC asyn class, Day 1, August 26, 2010

are also supported.
• We are stuck with the name, or re-writing a LOT of code!

Independent of EPICS
• asyn is actually independent of EPICS (except for optional device support and

asynRecord).
• It only uses libCom from EPICS base for OS independence in standard utilities

like threads, mutexes, events, etc.
• asyn can be used in code that does not run in an IOC

– asyn drivers could be used with Tango or other control systems

asyn Architecture

Device support (or SNL code,
another driver, or non-EPICS

software)

Port (named object)

Interfaces (named;
pure virtual functions)

asynCommon
(connect, report, …)

asynOctet (write,
read, setInputEos,…)

SLAC asyn class, Day 1, August 26, 2010

device device

Port (named object)

Port driver

addr=0 addr=1

Control flow – asynchronous driver

SLAC asyn class, Day 1, August 26, 2010

Control flow – synchronous driver

SLAC asyn class, Day 1, August 26, 2010

asynManager – Methods for drivers
• registerPort

– Flags for multidevice (addr), canBlock, isAutoConnect
– Creates thread for each asynchronous port (canBlock=1)

• registerInterface
– asynCommon, asynOctet, asynInt32, etc.

• registerInterruptSource, interruptStart, interruptEnd
• interposeInterface – e.g. interposeEos, interposeFlush
• Example code:
pPvt->int32Array.interfaceType = asynInt32ArrayType;

SLAC asyn class, Day 1, August 26, 2010

pPvt->int32Array.interfaceType = asynInt32ArrayType;

pPvt->int32Array.pinterface = (void *)&drvIp330Int32Array;

pPvt->int32Array.drvPvt = pPvt;

status = pasynManager->registerPort(portName,

ASYN_MULTIDEVICE, /*is multiDevice*/

1, /* autoconnect */

0, /* medium priority */

0); /* default stack size */

status = pasynManager->registerInterface(portName,&pPvt->common);

status = pasynInt32Base->initialize(pPvt->portName,&pPvt->int32);

pasynManager->registerInterruptSource(portName, &pPvt->int32,

&pPvt->int32InterruptPvt);

asynManager – Methods for Clients
(e.g. Device Support)

• Create asynUser
• Connect asynUser to device (port)
• Find interface (e.g. asynOctet, asynInt32, etc.)
• Register interrupt callbacks
• Query driver characteristics (canBlock, isMultidevice,

SLAC asyn class, Day 1, August 26, 2010

• Query driver characteristics (canBlock, isMultidevice,
isEnabled, etc).

• Queue request for I/O to port
– asynManager calls callback when port is free

• Will be separate thread for asynchronous port

– I/O calls done directly to interface methods in driver
• e.g. pasynOctet->write()

asynManager – Methods for Clients
(e.g. Device Support)

Example code:

/* Create asynUser */

pasynUser = pasynManager->createAsynUser(processCallback, 0);

status = pasynEpicsUtils->parseLink(pasynUser, plink,

&pPvt->portName, &pPvt->addr, &pPvt->userParam);

status = pasynManager->connectDevice(pasynUser, pPvt->portName, pPvt->addr);

SLAC asyn class, Day 1, August 26, 2010

status = pasynManager->canBlock(pPvt->pasynUser, &pPvt->canBlock);

pasynInterface = pasynManager->findInterface(pasynUser, asynInt32Type, 1);

status = pasynManager->queueRequest(pPvt->pasynUser, 0, 0);

In processCallback()

status = pPvt->pint32->read(pPvt->int32Pvt, pPvt->pasynUser, &pPvt->value);

asynManager – asynUser
• asynUser data structure. This is the fundamental “handle” used by asyn

asynUser = pasynManager->createAsynUser(userCallback queue,
userCallback timeout);

asynUser = pasynManager->duplicateAsynUser)(pasynUser,
userCallback queue,
userCallback timeout);

typedef struct asynUser {
char *errorMessage;
int errorMessageSize;

SLAC asyn class, Day 1, August 26, 2010

int errorMessageSize;
/* The following must be set by the user */
double timeout; /* Timeout for I/O operations */
void *userPvt;
void *userData;
/* The following is for user to/from driver communication */
void *drvUser;
/* The following is normally set by driver */
int reason;
/* The following are for additional information from method calls */
int auxStatus; /* For auxillary status /

} asynUser;

Standard Interfaces
Common interface, all drivers must implement

• asynCommon: report(), connect(), disconnect()
I/O Interfaces, most drivers implement one or more

• All of these have write(), read(), registerInteruptUser() and
cancelInterruptUser() methods

• asynOctet: flush(), setInputEos(), setOutputEos(), getInputEos(),
getOutputEos()

• asynInt32: getBounds()
• asynInt8Array, asynInt16Array, asynInt32Array:

SLAC asyn class, Day 1, August 26, 2010

• asynInt8Array, asynInt16Array, asynInt32Array:
• asynUInt32Digital:
• asynFloat64:
• asynFloat32Array, asynFloat64Array:

Miscellaneous interfaces
• asynOption: setOption() getOption()
• asynGpib: addressCommand(), universalCommand(), ifc(), ren(), etc.
• asynDrvUser: create(), free()

Support for Callbacks (Interrupts)

• The standard interfaces asynOctet, asynInt32,
asynUInt32Digital, asynFloat64 and asynXXXArray all
support callback methods for interrupts

• registerInterruptUser(…,userFunction, userPrivate, …)
– Driver will call userFunction(userPrivate, pasynUser, data)

whenever an interrupt occurs

SLAC asyn class, Day 1, August 26, 2010

whenever an interrupt occurs
– Callback will not be at interrupt level, so callback is not restricted

in what it can do

• Callbacks can be used by device support, other drivers, etc.
• Current interrupt drivers

– Ip330 ADC, IpUnidig binary I/O, quadEM APS quad electrometer,
areaDetector drivers

– Acromag IP440/IP445, HMS simulators for labs

• Ip330 ADC driver. Digitizing 16 channels at 1kHz.

• Generates interrupts at 1 kHz.

• Each interrupt results in:
– 16 asynInt32 callbacks to devInt32Average generic device support

– 1 asynInt32Array callback to fastSweep device support for MCA

Support for Interrupts – Performance

SLAC asyn class, Day 1, August 26, 2010

– 1 asynInt32Array callback to fastSweep device support for MCA
records

– 1 asynFloat64 callback to devEpidFast for fast feedback

• 18,000 callbacks per second

• 21% CPU load on MVME2100 PPC-603 CPU with
feedback on and MCA fast sweep acquiring.

Generic Device Support
• asyn includes generic device support for many standard EPICS records and

standard asyn interfaces
• Eliminates need to write device support in many cases. New hardware can

be supported by writing just a driver.
• Record fields:

– field(DTYP, “asynInt32”)
– field(INP, “@asyn(portName, addr, timeout) drvInfoString)

• Examples:
– asynInt32

SLAC asyn class, Day 1, August 26, 2010

– asynInt32
• ao, ai, bo, bi, mbbo, mbbi, longout, longin

– asynInt32Average
• ai

– asynUInt32Digital, asynUInt32DigitalInterrupt
• bo, bi, mbbo, mbbi, mbboDirect, mbbiDirect, longout, longin

– asynFloat64
• ai, ao

– asynOctet
• stringin, stringout, waveform

– asynXXXArray
• waveform (in and out)

Generic Device Support
• The following synApps modules all now use standard asyn

device support, and no longer have specialized device
support code:
– Ip330 ADC

– IpUnidig

– quadEM

SLAC asyn class, Day 1, August 26, 2010

– quadEM

– dac128V

– Canberra ICB modules (Amp, ADC, HVPS, TCA)

• MCA and motor records use special device support,
because they are not base record types

• However, the MCA and new motor drivers now only use
the standard asyn interfaces, so it is possible to write a
database using only standard records and control any MCA
driver or new motor driver

asynRecord
• EPICS record that provides

access to most features of asyn,
including standard I/O interfaces

• Applications:
– Control tracing (debugging)

– Connection management

SLAC asyn class, Day 1, August 26, 2010

– Perform interactive I/O

• Very useful for testing,
debugging, and actual I/O in
many cases

• Replaces the old generic “serial”
and “gpib” records, but much
more powerful

Synchronous interfaces
• Standard interfaces also have a synchronous interface, even

for slow devices, so that one can do I/O without having to
implement callbacks

• Example: asynOctetSyncIO
– write(), read(), writeRead()

• Very useful when communicating with a device that can
block, when it is OK to block

SLAC asyn class, Day 1, August 26, 2010

block, when it is OK to block
• Example applications:

– EPICS device support in init_record(), (but not after that!)
– SNL programs, e.g. communicating with serial or TCP/IP ports
– Any asynchronous asyn port driver communicating with an

underlying asynOctet port driver (e.g. motor drivers)
– HMS simulator port driver for lab
– areaDetector driver talking to marCCD server, Pilatus camserver,

etc.
– iocsh commands

Tracing and Debugging
• Standard mechanism for printing diagnostic

messages in device support and drivers
• Messages written using EPICS logging facility,

can be sent to stdout, stderr, or to a file.
• Device support and drivers call:

– asynPrint(pasynUser, reason, format, ...)
– asynPrintIO(pasynUser, reason, buffer, len,

format, ...)
– Reason:

SLAC asyn class, Day 1, August 26, 2010

– Reason:
• ASYN_TRACE_ERROR
• ASYN_TRACEIO_DEVICE
• ASYN_TRACEIO_FILTER
• ASYN_TRACEIO_DRIVER
• ASYN_TRACE_FLOW

• Tracing is enabled/disabled for (port/addr)
• Trace messages can be turned on/off from

iocsh, vxWorks shell, and from CA clients
such as medm via asynRecord.

• asynOctet I/O from shell

Fast feedback device support (epid record)

• Supports fast PID control

• Input: any driver that
supports asynFloat64 with
callbacks (e.g. callback on
interrupt)

• Output: any driver that
supports asynFloat64.

SLAC asyn class, Day 1, August 26, 2010

supports asynFloat64.

• In real use at APS for
monochromator feedback
with IP ADC/DAC, and
APS VME beam position
monitor and DAC

• >1kHz feedback rate

asynPortDriver

• New C++ base class that greatly simplifies writing an
asyn port driver
– Initially developed as part of the areaDetector module

– Moved from areaDetector into asyn itself in asyn 4-11

– All of my areaDetector, D/A, binary I/O, and most recently

SLAC asyn class, August 26, 2010

– All of my areaDetector, D/A, binary I/O, and most recently
motor drivers now use asynPortDriver

– The 2 drivers I’ve written for this class (Acromag IP440/IP445
binary I/O and HMS simulator) use asynPortDriver

• Hides all details of registering interfaces, registering
interrupt sources, doing callbacks, default connection
management

asynPortDriver C++ Base Class
• Parameter library

– Drivers typically need to support a number of parameters that control
their operation and provide status information. Most of these can be
treated as int32, int32Digital, float64, or strings. Sequence on new value:

• New parameter value arrives, or new data arrives from device
• Change values of one or more parameters
• For each parameter whose value changes set a flag noting that it changed
• When operation is complete, call the registered callbacks for each changed

parameter

• asynPortDriver provides methods to simplify the above

SLAC asyn class, August 26, 2010

• asynPortDriver provides methods to simplify the above
sequence

– Each parameter is assigned an index based on the string passed to the
driver in the drvUser interface

– asynPortDriver has table of parameter values, with data type/asyn
interface (int32, float32, etc.), caches the current value, maintains
changed flag

– Drivers use asynPortDriver methods to read the current value from the
table, and to set new values in the table.

– Method to call all registered callbacks for values that have changed since
callbacks were last done.

asynPortDriver C++ Methods
virtual asynStatus readInt32(asynUser *pasynUser, epicsInt32

*value);
virtual asynStatus writeInt32(asynUser *pasynUser, epicsInt32

value);
virtual asynStatus readFloat64(asynUser *pasynUser, epicsFloat64

*value);
virtual asynStatus writeFloat64(asynUser *pasynUser, epicsFloat64

value);
virtual asynStatus readOctet(asynUser *pasynUser, char *value,

size_t maxChars, size_t *nActual, int *eomReason);
virtual asynStatus writeOctet(asynUser *pasynUser, const char

*value, size_t maxChars, size_t *nActual);

SLAC asyn class, August 26, 2010

virtual asynStatus writeOctet(asynUser *pasynUser, const char
*value, size_t maxChars, size_t *nActual);

• Drivers typically don’t need to implement the readXXX functions, base
class takes care of everything, i.e. get cached value from parameter library

• Need to implement the writeXXX methods if any immediate action is
needed on write, otherwise can use base class implementation which just
stores parameter in library

asynPortDriver C++ Constructor
asynPortDriver(const char *portName, int maxAddr,

int paramTableSize, int interfaceMask,
int interruptMask, int asynFlags, int autoConnect,
int priority, int stackSize);

portName: Name of this asynPort
maxAddr: Number of sub-addresses this driver supports (typically 1)
paramTableSize: Number of parameters this driver supports
interfaceMask: Bit mask of standard asyn interfaces the driver supports

SLAC asyn class, August 26, 2010

interfaceMask: Bit mask of standard asyn interfaces the driver supports
interruptMask: Bit mask of interfaces that will do callbacks to device support
asynFlags: ASYN_CANBLOCK, ASYN_MULTIDEVICE
autoConnect: Yes/No
priority: For port thread if ASYN_CANBLOCK
stackSize: For port thread if ASYN_CANBLOCK

Based on these arguments base class constructor takes care of all details of registering
port driver, registering asyn interfaces, registering interrupt sources, and creating
parameter library.

Summary- Advantages of asyn
• Drivers implement standard interfaces that can be accessed from:

– Multiple record types
– SNL programs
– Other drivers

• Generic device support eliminates the need for separate device support in
90% (?) of cases
– synApps package 10-20% fewer lines of code, 50% fewer files with asyn

• Consistent trace/debugging at (port, addr) level
• asynRecord can be used for testing, debugging, and actual I/O applications

SLAC asyn class, Day 1, August 26, 2010

• asynRecord can be used for testing, debugging, and actual I/O applications
• Easy to add asyn interfaces to existing drivers:

– Register port, implement interface write(), read() and change debugging output
– Preserve 90% of driver code

• asyn drivers are actually EPICS-independent. Can be used in any other
control system.

