
Framework 4 :
Control-oriented graphical interfaces for
beamlines

M. Guijarro – WP10 workshop, ESRF, 2011 2

What is the Framework ?

2003
first version,

Python 1.5 + Qt 3

mxCuBE

2005
refactoring =
Framework 2,

Python 2.x + Qt 3

End of 2007
decision to go for

a new version,
Python 2.x + Qt 4

2011

Mid 2008 until 2010
additional developer

2006

ID21
GUI

ID17
GUI

• A library and a set of tools for ESRF BCU staff to deliver graphical applications on
beamlines for data acquisition and experiment control
• Python + Qt
• Control system agnostic : works on top of spec, Taco, Tango, …
• Design principles

• bricks instead of widgets
• MVC architecture

• A long-running project within BCU

Framework 4 BsxCuBE Cryobench
GUI

ID13
GUI

M. Guijarro – WP10 workshop, ESRF, 2011 3

What is the Framework ?

A threefold project
• Control system abstraction
• GUI bricks
• Application builder

Control system abstraction

Control Objects

• Control Objects are Python objects containing Command and Channel objects
• Command objects corresponds to :

• Spec macros
• Taco commands
• Tango commands
• Sardana Macro Server macros

• Channel objects corresponds to :
• Spec channels
• Tango attributes

• Control Objects can emit signals/events to notify listeners something happened
• Starting with Framework 4, Control Objects are really independent of Qt

M. Guijarro – WP10 workshop, ESRF, 2011 5

Control system abstraction

Control Objects

• Control Objects provide a unified interface to middleware and other control systems

Control
Object

SpecClient Taurus (core) TacoDevice Sardana

Control system abstraction

Control Objects Server

X M L

H a r d w a r e o b j e c t c l a s s e s

• There is one Control Objects Server per beamline
• The Control Objects Server takes care of configuration for Control Objects
• Configuration is stored in XML files
• A Control Object can run within the Control Objects Server or within the client GUI
application

Control Object classes

Control Objects Server

Control
ObjectControl

ObjectControl
Object

Control system abstraction

Example : a Shutter Control Object

• Defines 2 commands (open, close) and 2 channels (state, status)

< o b j e c t c l a s s = " S h u t t e r " u s e r n a m e = " S a f e t y S h u t t e r " >
< c h a n n e l n a m e = " s t a t u s " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v S t a t u s " / >
< c h a n n e l n a m e = " s t a t e " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v S t a t e " / >
< c o m m a n d n a m e = " o p e n " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v O p e n " / >
< c o m m a n d n a m e = " c l o s e " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v C l o s e " / >

< / o b j e c t >

• Logic is in the Python code (Shutter class)

Control system abstraction

Example : a Shutter Control Object

• Defines 2 commands (open, close) and 2 channels (state, status)

< o b j e c t c l a s s = " S h u t t e r " u s e r n a m e = " S a f e t y S h u t t e r " >
< c h a n n e l n a m e = " s t a t u s " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v S t a t u s " / >
< c h a n n e l n a m e = " s t a t e " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v S t a t e " / >
< c o m m a n d n a m e = " o p e n " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v O p e n " / >
< c o m m a n d n a m e = " c l o s e " u r i = " / / b a s i l / i d 2 3 / b s h / 1 " t y p e = " t a c o " c a l l = " D e v C l o s e " / >

< / o b j e c t >

• Logic is in the Python code (Shutter class)

from Framework4.Control.Core.CObject import CObjectBase, Signal, Slot

class Shutter(CObjectBase):
 signals = [Signal('statusChanged'), Signal('stateChanged')]
 slots = [Slot("open"), Slot("close")]

 def init(self):
 self.channels["state"].connect("update", self.stateChanged)
 self.channels["status"].connect("update", self.statusChanged)

 def open(self):
 self.commands['open']()

 def close(self):
 self.commands['close']()

 def statusChanged(self, status):
 self.emit("statusChanged", status)

 def stateChanged(self, state):
 self.emit("stateChanged", state)

GUI Bricks

Building blocks for an application

• Meta-widgets
• Python classes inheriting from Framework4.GUI.Core.BaseBrick
• Brick objects are not Qt objects – bricks contain a brick_widget member, being Qt’s
container for the brick
• Bricks contain properties
• A brick can connect to one or several Control Objects
• Each brick specifies its own connection definitions, containing a list of expected
signals/slots
• Taurus widgets can be used as bricks

GUI Bricks

Shutter brick example

from Framework4.GUI import Core
from Framework4.GUI.Core import Property, Connection, Signal, Slot

from PyQt4 import Qt, QtGui
import logging

__author__ = "Matias Guijarro"
__version__ = 1.0
__category__ = "General"

class ShutterBrick(Core.BaseBrick):
 description = 'Simple class to display and control a shutter'
 url = ''
 properties = { 'show_button': Property('boolean',
 'Show button',
 'Allow the user to control the shutter',
 'showButtonChanged',
 True)

 , 'orientation': Property('combo',
 'Orientation',
 onchange_cb = 'orientationChanged',
 default = 'Portrait',
 choices = ['Portrait','Landscape'])}

 connections = {"shutter": Connection("Shutter object",
 [Signal("stateChanged", "shutter_state_changed")],
 [Slot("open"), Slot("close")],
 "connectionStatusChanged")}

Definition of connection :
brick expects an object
emitting stateChanged signal
and with 2 slots « open » and
« close »

Control
Objects server

M. Guijarro – WP10 workshop, ESRF, 2011 11

GUI bricks

 Communication between Control Objects and GUI Bricks

Control
ObjectControl

ObjectControl
Object

Application

GUI Brick
GUI Brick GUI

 Brickevents &
RPC

Control
Object
proxy

Control
Object

• Direct
communication
using
PyDispatcher**
when Control
Objects are
running within the
Application

 Serialization is done using standard Pickle module from Python

*

*: http://www.zeromq.org ; **: http://pydispatcher.sourceforge.net/

http://www.zeromq.org/

M. Guijarro – WP10 workshop, ESRF, 2011 12

Application Builder

 GUI Builder

• Minimal tree-based GUI
editor

• Simple and light

• Allows to create an
application, to create a
layout and to put bricks into
it

• Allows to establish
connections between bricks
and control objects

M. Guijarro – WP10 workshop, ESRF, 2011 13

Application Builder

 GUI Builder : short demo

M. Guijarro – WP10 workshop, ESRF, 2011 14

Application Builder

Saving an application

 A directory is created for each GUI application
 Layout is separated from properties, connections
 Everything is stored in a human-readable XML format
 Resources (images, icons) can be copied into the directory to stay with the GUI

application

M. Guijarro – WP10 workshop, ESRF, 2011 15

Conclusion, future

A tool tailored to our needs

Many Framework 2 applications, only 3 Framework 4 applications : missing new style
bricks and control objects

Porting of big applications to be done (mxCuBE...)

New architecture is cleaner, design is better : even if the GUI part changes one day, the
Control Objects will remain

Future perspectives
• Control Objects used in Framework GUI applications should really be the same objects used
within the beamline experiment sequences (=> towards an integrated beamline software
platform, FP7 WP10 goal)
• Remote Access exists in Framework 2 ; for Framework 4, what about having web based
applications ?
• Ideally, bricks should not depend on a particular GUI toolkit

M. Guijarro – WP10 workshop, ESRF, 2011 16

The Framework home

Homepage on EPN Forge :

https://forge.epn-campus.eu/projects/show/132

Git repository :

git.epn-campus.eu/repositories/Framework4

Wiki (will be transfered to the EPN Forge page) :

http://fwk.blissgarden.org/

M. Guijarro – WP10 workshop, ESRF, 2011 17

Thanks for your attention

Questions ?

	Slide 1
	Slide 3
	Slide 4
	Diapo 4
	Slide 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Slide 9
	Slide 6
	Slide 8
	Slide 12
	Diapo 15
	Diapo 16
	Diapo 17

