

Institut für Strukturphysik, TU Dresden, Christian Schroer (schroer@xray-lens.de)

# Wave-Optical Modeling of Hard X-Ray Transmission Optics

Christian G. Schroer, Jan Feldkamp, Jens Patommel, Andreas Schropp, Sandra Stephan Institute of Structural Physics Dresden University of Technology (TU Dresden) D-01062 Dresden Germany e-mail: schroer@xray-lens.de



#### Wave-Optics of Hard X-Rays

Own code as part of "tomo"-package

- paraxial free-space wave propagation
- some thick objects (using parabolic wave equation)
  - ♀ refractive lenses
  - ♀ volume zone plates



#### Free Propagation of X-Rays

Fresnel-Kirchhoff integral (paraxial approx.):

$$\psi_z(\vec{x},\omega) = -\frac{ie^{ikz}}{2\lambda z} \int \psi_0(\vec{x}',\omega) \cdot \exp\left\{ik\frac{(x-x')^2 + (y-y')^2}{2z}\right\} dx' dy'$$

Convolution with integral kernel:

$$K_z(x,y) := -\frac{ie^{ikz}}{2\lambda z} \cdot \exp\left\{ik\frac{x^2 + y^2}{2z}\right\}$$

Numerical implementation: (convolution theorem)

$$\tilde{\psi}_0 = FFT(\psi_0) \longrightarrow \tilde{\psi}_z = \tilde{\psi}_0 \cdot \tilde{K}_z \longrightarrow \psi_z = IFFT(\tilde{\psi}_z)$$

$$\tilde{K}_{z,\omega}(\vec{\xi}) = e^{ikz} \cdot \exp\left\{-\frac{iz}{2k} \left|\vec{\xi}\right|^2\right\}$$



Far-field: rewrite Fresnel-Kirchhoff-integral

$$\psi_z(\vec{x},\omega) = -\frac{ie^{ikz}}{2\lambda z} \int \psi_0(\vec{x}',\omega) \cdot \exp\left\{ik\frac{(x-x')^2 + (y-y')^2}{2z}\right\} dx' dy'$$

phase in exponent:

$$\begin{aligned} \frac{(x-x')^2 + (y-y')^2}{2z} &= \frac{x^2 + y^2}{2z} - \frac{xx' + yy'}{z} + \frac{x'^2 + y'^2}{2z} \\ \uparrow & \uparrow \\ \text{only coords.} & \text{only coords.} \\ \text{in target plane} & \text{in source plane} \end{aligned}$$

4



#### Transmission Through Thin Object

Refraction (elast. scattering), absorption, and attenuation by Comptonscattering described by:

$$n(x, y, z) = 1 - \delta(x, y, z) + i\beta(x, y, z)$$

Thin object:

no propagation effects inside object

$$\psi_{\Delta z}(x,y) = T_{\Delta z}(x,y) \cdot \psi_0(x,y)$$



Transmission function:

$$T_{\Delta z}(x,y) = e^{ik} \int_{-}^{ndz} dz = e^{ik\Delta z} \cdot e^{-ik} \int_{-}^{\delta dz} \cdot e^{-k} \int_{-}^{\beta dz} dz$$



#### Transmission Optic: Refractive X-Ray Lenses

Many different realizations, e. g.:



#### Nanofocusing lenses



Short focal length:

- Iarge demagnification small image
- Iarge numerical aperture small diffraction limit



#### Single Lens:



 $f_{
m s} = rac{R}{2\delta}, \quad \delta pprox 10^{-6}$ at 10 keV

Focal length 10<sup>6</sup> times longer than R

Inside single lens:

- Subscription CRL: deviations from straight line:  $\sim 5 \mu rad$ thickness l = 1 mm: deviation  $\sim 5 nm$
- Solution NFL: deviations from straight line: ~ 10  $\mu$ rad thickness / = 85  $\mu$ m: deviation ~ 1 nm

 $\rightarrow$  single lens is thin!!



#### Transmission Through Single Lens



- 1) curvature of wave front
- 2) Gaussian attenuation of amplitude
- 3) constant phase shift by lens material of material between apices of parabolas
- 4) constant attenuation of material between apices
- 5) phase shift through free propagation



Refractive X-Ray Lens: Wave Optical Picture

Stack of individual lenses:

$$\hat{T}_{\text{lens}} = \hat{K}_{\frac{l}{2}} \prod_{i=2}^{N} \left( \hat{T} \hat{K}_{l} \right) \hat{T} \hat{K}_{\frac{l}{2}}$$

Ordered product of transmission and propagation operators





#### Thick Refractive X-Ray Lens



SMEXOS2009

Schroer, professorial dissertation (2003) V. Kohn, J. Exp. Theo. Phys. **97**, 204 (2003)

10



#### Nanofocusing Lenses (NFLs)



graphy and deep reactive ion etching! SMEXOS2009

APL 82, 1485 (2003)



#### Crossed Nanofocusing Lenses



Setup at the European Synchrotron Radiation Facility (ESRF)



#### Crossed Nanofocusing Lenses





#### Ideal Parabolic NFL

#### Gaussian aperture:



Parabolic lens shape: Gaussian transmission

horiz. *f* = 13.2 mm vert. *f* = 22.7 mm

$$NA \propto rac{1}{\sqrt{f}}$$

NA in horiz. direction bigger than in vert. direction



#### Ideal Parabolic NFL

## Gaussian amplitude:



X-ray microscopy with Gaussian beam:

For a given microbeam:

Focus size depends on contrast mechanism:

fluorescence: intensitydiffraction: amplitude

focus for diffraction is  $\sqrt{2}$  times bigger than for fluorescence

(phase color coded)



#### Coherence in Focused Beam

Coherent diffraction imaging:

Lateral coherence length must exceed

#### Mutual intensity function

$$J(r,r') = \langle E(r,t) \cdot E^*(r',t) \rangle_t$$

for monochromatic beam

#### for

- Gaussian chaotic source (approximation)
- propagation to lens (van Cittert-Zernike)
- propagation to focus



#### Mutual Intensity in Focus

$$J(r,r') = A \cdot e^{-\frac{r^2 + r'^2}{2 \cdot \sigma_b^2}} \cdot e^{-\frac{(r-r')^2}{2 \cdot \sigma_{\rm coh}^2}}$$
$$\sigma_b = \sqrt{2\sigma_{b_{\rm geo}}^2 + 2\sigma_t^2} \qquad \sigma_{\rm coh} = 2\sigma_t \sqrt{1 + \frac{\sigma_t^2}{\sigma_{b_{\rm geo}}^2}}$$
FWHM

Focus size (amplitude)

lateral coherence length in focus

$$b_{\rm ampl} = \sqrt{2b_{\rm geo}^2 + 2d_t^2}$$

$$l_t = 2d_t \sqrt{1 + \frac{d_t^2}{b_{\text{geo}}^2}}$$

geometic image of source Airy disc size



#### Coherence in Focus





#### **Diffraction Pattern of Gold Nanoparticle**



sample-detector distance: 1250 mm (in air) detector: FReLoN 4M 50µm pixel size exposure time: 10 x 60 s Reconstruction:



#### PRL 101, 090801 (2008) SMEXOS2009



#### So Far: No Ideal Lens...









#### Numerical Model of Nanoprobe



#### Includes:

- ♀ underetching

- ♀ periodic structures

Parameters deduced from beam shape in far field.



#### Complex Amplitude in Focused Beam





#### Wave Front: Focusing with Aberrations

#### Measured farfield



## Numerical modeling





#### Effective Aperture and Diffraction Limit

#### Nanofocusing lens:



lens short (attenuation negligible):

$$D_{\rm eff} < 2R_0 \approx 2\sqrt{Rl}$$

$$NA = \frac{D_{\rm eff}}{2f_{\rm min}} \leq \frac{2\sqrt{Rl}}{2\sqrt{\frac{Rl}{2\delta}}} = \sqrt{2\delta}$$





#### Effective Aperture and Diffraction Limit

#### Diffraction limit:



N = 100 $l \ge 0.084$  $R = 0.5 - 50 \mu m$ 

# bounded by $0.75 \frac{\lambda}{2\sqrt{2\delta}} \propto {\rm const.}$

Best materials: high density and low Z



#### Effective Aperture and Diffraction Limit

#### Diffraction limit:



Best materials: high density and low Z



#### Adiabatically Focusing Lenses



Very demanding in terms of nanofabrication: optimize NFLs first! SMEXOS2009





#### Example AFL

Diamond lens:

low atomic number Z and high density p

N = 1166 individual lenses entrance aperture: 18.9µm exit aperture: 100nm f = 2.3mm

diffraction limit: 4.7nm

diffraction limit: 14.2nm

compare to NFL:

same aperture

#### contracting wave field inside lens





#### AFL: Attenuation limits aperture

Workaround:

kinoform lens shape, segment size follows converging beam:

diffraction limit: 2.2nm

This is no hard limit, but is difficult to implement in practice.





#### Next Step: AFLs Made of Silicon

entrance aperture:  $2R_{0i} = 20\mu m$ exit aperture:  $2R_{0f} = 1\mu m$ energy: 10 - 20keV in 500eV steps



properties:

f = 2.7mm  $d_{\rm t} = 12.6$ nm

as horizontal lens in x-ray nanoprobe (e. g. ID13 ESRF):

 $L_1 = 47m$ , source size: 150µm

horizontal focus: 15.3nm (17400 x reduction)



Wave Propagation Through FZP

parabolic wave equation:

$$2ik\frac{\partial u}{\partial z} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + k^2 \left(n^2(x, y, z) - 1\right)u = 0$$

29

 $n(x,y,z) = 1 - \delta(x,y,z) + i\beta(x,y,z)$  complex potential!

Ni/vac. zone plate  $E = 20 \text{ keV}, r_M(0) = 0.8 \mu m$  $\Delta r_M = 1 n m$ 







ideal tilted FZP [Kang, et al., PRL **96**, 127401 (2006)]

incoming plane wave

propagate exit wave field to focus







transverse flux density:  
$$J_{x}(x,z) = \frac{1}{2ik} \left[ \left\langle \psi \left| \partial_{x} \psi \right\rangle - \left\langle \partial_{x} \psi \left| \psi \right\rangle \right] \right]$$

#### PRB **74**, 033405 (2006)























#### FZP: Summary

no limit as long as matter is homogeneous

multilayers have been shown to behave homogeneously down to below 2 nm d-spacing (1 nm layers)

high efficiency, since only one diffraction order is excited!

atomicity will limit zone placement!

other optics may be calculated similarly!







#### Conclusion

Nanofocusing lenses:

 WA limited by critical angle: NA ≤  $\sqrt{2\delta}$  (Refractive power to unit length fixed by fixed size of aperture and density of low Z material.)

Adiabatically focusing lenses:

- $\bigcirc$  hard x-ray beam size down to 5 nm seems feasible.

Thick tilted FZP:

- limit of focus given by atomicity of matter.
- $\Theta$  < 1nm focusing conceivable.