

Aberrations in curved x-ray multilayers

Ch. Morawe, J-P. Guigay, C. Ferrero, ESRF (France) V. Mocella, CNR-IMM (Italy) H. Mimura, S. Handa, K. Yamauchi, Osaka University (Japan)

- Introduction
- Theoretical approach
- Results and interpretation
- Comparison with experiments
- Summary + Perspectives

Introduction

Synchrotron optics: Kirkpatrick-Baez (KB) focusing devices

- Separate vertical and horizontal focusing (non-circular source)
- Technologically easier than single reflection ellipsoid + increased field of view
- Metal or graded ML coatings

Introduction

Basic geometry

- ML structure as nested ellipses (kinematical approximation)
- Upper surface reflection through ideal focus F
- Refraction for penetrating rays

Method

• $ML \cong Two-interface slab$

P(p/2,0), P'(p/2+s,0)

- Geometrical ray tracing
- Purely analytical approach
- Parametric representation

$$t = \tan \frac{\varphi}{2} \approx \frac{1}{\tan \theta}$$

Goals

- Caustic shape
- Beam intersections
- Chromatic behavior

(2008)

Penetration

- s given by mean extinction depth \boldsymbol{z}

 $s \approx z(\theta) \cdot \sin \theta \approx const.$

- Extinction depth estimated from flat $\substack{ \text{MLs} \\ z = N_C} \cdot \Lambda$

$$R(N_{C}) = \left(1 - \frac{1}{e}\right) \cdot R_{MAX}$$

Λ [nm]	θ	N _C	z [nm]	s [nm]
1.50	0.973°	163	244.5	4.113
2.00	0.735°	67	134.0	1.691
3.00	0.499°	24	72.00	0.6043
4.00	0.382°	13	52.00	0.3250
4.46	0.351°	10	44.60	0.2528
5.00	0.312°	8	40.00	0.1970
6.00	0.266°	5	30.00	0.1206
7.00	0.236°	4	28.00	0.0952

Ch. Morawe - SMEXOS -

Caustic equations

$$x(t) = \delta \cdot s \cdot (1 + s/p) \cdot (1 + 6 \cdot t^2 - 3 \cdot t^4)$$
$$y(t) = \delta \cdot s \cdot (1 + s/p) \cdot 8 \cdot t^3$$

Results

- x and y diverge at grazing incidence
- $\boldsymbol{\delta}$ and s amplify aberration effects
- No aberration for $\delta = 0$ or s = 0
- Very small x-offset at normal incidence

(Gaussian optics)

Ch. Morawe - SMEXOS -

Beam intersections $X(Y=0) = \delta \cdot s \cdot \left(1 + 2 \cdot t^2 + t^4\right)$ $Y(X=0) = 2 \cdot \delta \cdot s \cdot \left(2 \cdot t + t^3\right)$ Results • Similar structure as caustic equations \rightarrow similar conclusions • Order of magnitude $\Delta x \leq 1000 \text{ nm}$ $\Delta y \le 10 \text{ nm}$

Ch. Morawe - SMEXOS -

Ch. Morawe - SMEXOS -

Comparison with experiments

Ch. Morawe - SMEXOS -

Comparison with experiments

Comparison with experiments

Are we already doing better ?

• ML design via corrected Bragg law

$$\Lambda = \frac{\lambda}{2\sqrt{n^2 - \cos^2\theta}} \left(\approx \frac{\lambda}{2 \cdot \sin\theta}\right)$$

- Refraction implicitly considered
- ML interface shapes not elliptic (except for surface layer)
- Aberrations reduced/suppressed ?

Need for wave optical simulations !

Ch. Morawe - SMEXOS -

Summary - Perspectives

<u>Summary</u>

- Analytical model offers general insight into focusing performance of curved multilayers
- nm aberrations in the focal plane
- µm variations of the focal length
- Reduced aberrations for larger angles of incidence
- Chromatic aberrations negligible
- Comparative results obtained by exact ray tracing

<u>Perspectives</u>

- Information on intensity distribution
- Full wave optical treatment of curved multilayers → PhD project (ESRF/Univ.Göttingen)
- Improved experimental results