

Simulation and Optimization of Source and **Optical Elements for New Imaging Beamline Construction at ANKA**

Tao Liu, Michael Hagelstein, Daniele Pelliccia, Tilo Baumbach

Institute for Synchrotron Radiation ISS/ANKA -Forschungszentrum Karlsruhe

SMEXOS, 25.02.2009, Grenoble

KIT – die Kooperation von Forschungszentrum Karlsruhe

orschungszentrum Karlsruhe

Universität Karlsruhe (TH) orschungsuniversität • gegründet 1825

Preliminary layout

Superconducting: SCUW Wiggler & undulator Switchable mode

Wiggler parameters Period length λu [mm]: 45 Period number: 33 Deflection parameter K: 13.8 Magnetic field [T]: 3.21 T Critical energy [keV]: 13.108
Undulator parameters Period length λu [mm]: 15 Period number: 99 Deflection parameter K: 1.2 Magnetic field [T]: 0.86 T Fundamental energy [keV]: 2.250

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

SPECTRA, T. Tanaka

SCU14 -demonstrator installed on February 28th, 2005, ANKA

in der Helmholtz-Gemeinschaft

Experimental stations

Karlsruhe Institute of Technology

Rocking Curve Imaging

Imaging requirements

 XRM
 focused beam, high brilliance, intermediate energy

 Tomography & radiography
 large beam size, high energy photon, high flux

 Coherence imaging
 Coherence, high flux

Diffraction enhanced imaging Rocking curve imaging High energy resolution, high brilliance, focused beam

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Optical Layout, option 1

Optical Layout, option 2

coherence length at 43m: ξ_x =2.8µm, ξ_z =29.2 µm (direct beam)

vertical beam instability from DCM ~ 100 nmrad=0.1 μ rad DCM at 35m: 8*10⁶×0.1*10⁻⁶ =8 μ m DCM at 18.5m: 24.5*10⁶×0.1*10⁻⁶=24.5 μ m — kill the coherence!

Optical Layout, option 3

Ray-tracing simulations (XOP2.1, shadow1.0)

- Simulations for wiggler and undulator source, separately.
- Beam spot size is given in x×z dimension (cm).
- x' and z' are divergence (mrad) in x and z.
- Intensities are given relative to source intensity, 25000.
- Monochromator: infinite dimensions.
- Collimating mirror: 100cm×20cm

Direct beam		source	, collim	ator		image
	No	Source	energy eV	Source x×z	image x×z	image x'×z'
High coherence	1	wiggler	8000±15	0.247×0.017 25000	12.3×1.69 12666	2.82 ×0.39
Large beam profile	2	wiggler	25000±80	0.232×0.011 25000	11.9×0.99 17555	2.75×0.22
	3	Undulator 3rd	7152±6	0.201×0.055 25000	0.58 ×0.36 25000	0.12 ×0.08
Beam profile at 43m	4	Undulator 5th	11000±10	0.205 ×0.055 25000	0.69 ×0.58 2500	0.16 ×0.14
	· · · · · · · · · · · ·					
					- - - 	•
	-		- - - 	-	- - 	
8keV, wiggler	25keV,	wiggler	7keV,	, undulator	11keV	, undulator
KIT – die Kooperation von Forschungszentrum Karlsruhe Gmł	oH und Universität	 Karlsruhe (TH)	Forschung in der Helm	szentrum Karlsruhe iholtz-Gemeinschaft	Univ Forsch	ersität Karlsruhe (TH) ungsuniversität • gegründet 1825

d-spacing =2.7~ 3 nm, N~200 High resolution DMM Bandwidth: 10⁻³, Mo/B4C d-spacing =1.5 nm, N=600

Energy (keV)	DMM	grazing angle (º)	reflectivity
8	W/Si	1.54	0.72
25	W/Si	0.49	0.80

J. Synch Rad. (2006). 13, 204

DMM

KIT – d

wiggler source, W/Si, 3nm, 200 layers

	No	energy (eV)	Image dist M	image x×z	image x'×z'	Resolution eV	Bandwidth %
	1	8000±200	10.5	7.70×1.07 4265	2.84×0.39 4265	214	2.7%
	2	8000±200	26.5	12.4×1.66 4265	2.84×0.39 4265	214	2.7%
	3	25250±750	10.5	7.52×0.57 5707	2.75×0.22 5707	730	2.9%
							· · · · · · · · · · · · · · · · · · ·
3eam profile xz at or 43m	27 m	- - - - - - - - - - - - - - - - - - -					
		1: 8keV		2: 8ke√	/, wigaler	3: 25ke	V, wiggler

ANKA Angströmquelle Karlsruhe Commercial Service

DCM

$$m\lambda = 2d\sin\theta_0(1 - \frac{\delta(\lambda)}{\sin^2\theta_0})$$

 $\tilde{n} = 1 - \delta(\lambda) - i\beta$

Fixed exit 4°~40° Si111, Ge111: 3.2~25keV Si311: 6~50keV

Crystal plane	Si111			Si311			Ge111				
Energy (keV)	3.2	8	15	25	6	25	50	3.2	8	15	25
Bragg angle (°)	38.2	14.3	7.57	4.54	39.1	8.71	4.34	36.4	13.7	7.27	4.35
Darwin width (µrad)	109.2	35.0	17.9	10.6	23.9	4.32	2.13	247.0	77.2	41.9	25.4
Footprint (cm)		5.55		9.85		5.15			5.78		10.3

Г

Universität Karlsruhe (TH) Forschungsuniversität - gegründet 1825

No		Crystal	course dist	1000 000	1000 00	recolution	
INU	(eV)	Crystal	m	x×z	x'×z'	eV	
1	8000±15	Si111	35	11.2×1.66 388	2.38×0.39 388	11.6	
2	25000±80	Si111	35	10.8×0.916 395	2.50×0.240 395	55.0	
3	25000±80	Si311	35	9.69×1.18 79	2.43×0.166 79	30.6	
4	8000±15	Ge111	35	12.5×1.56 694	2.65×0.37 694	12.6	
			Ge 111 energy	has higher resolution	er flux, cor with Si11	nparable 1	
			ko\/ wiggle	or \$111			

DCM: combined with front Slit

DCM

undulator source

DCM: Sagittal Focusing

second crystal, Bragg angle θ at E

Source collimator DCM image Sagittal Radius S1=35m S1=18.5m S2=8m S2=24.5m energy(ke 2 nd R1, cm R2, cm 4 Si111 643 1041 5 Si111 515 834 8 Si111 322 521 20 Si111 129 208 20 Si311 246 399 25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 308 499 20 Ge111 101 164		Horizon				
$\begin{array}{c c} Sagittal Radius \\ S1=35m \\ S2=8m \\ S2=24.5m \\ \hline S2=24.5m \\ \hline S2=24.5m \\ \hline \\ $	SOL	irce co	ollimator		DCM	image
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	S	Sagittal F	Radius	S1=35m S2=8m	S1=18.5m S2=24.5m	
4 Si111 643 1041 5 Si111 515 834 8 Si111 322 521 20 Si111 129 208 20 Si311 246 399 25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		energy(ke V)	2 nd crystal	R1, cm	R2, cm	
5 Si111 515 834 8 Si111 322 521 20 Si111 129 208 20 Si311 246 399 25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		4	Si111	643	1041	
8 Si111 322 521 20 Si111 129 208 20 Si311 246 399 25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		5	Si111	515	834	
20 Si111 129 208 20 Si311 246 399 25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		8	Si111	322	521	
20 Si311 246 399 25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		20	Si111	129	208	
25 Si311 197 319 35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		20	Si311	246	399	
35 Si311 141 228 4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		25	Si311	197	319	
4 Ge111 617 999 5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		35	Si311	141	228	
5 Ge111 494 780 8 Ge111 308 499 20 Ge111 101 164		4	Ge111	617	999	
8 Ge111 308 499 20 Ge111 101 164		5	Ge111	494	780	
20 Ge111 101 164		8	Ge111	308	499	
		20	Ge111	101	164	

Universität Karlsruhe (TH) Forschungsuniversität - gegründet 1825

DCM: Sagittal Focusing DCM image collimator source wiggler source No Μ Е **s1** image image energy mono (eV) x'×z', mrad eV m x×z, cm 11.6 1 8000±15 DCM 35 0.23 0.047×1.66 11.2×0.386 Si111 376 376 2 DCM 18.5 1.32 3.10×1.02 2.08×0.394 11.6 8000±15 362 Si111 362 3 25000±80 DCM 35 0.23 0.050×1.02 3.00×0.172 33.3 Si311 **40 40** Beam profile xz at 43m Optimal magnification for sagittal focusing (large divergence source): $M = \frac{s_2}{s_2} =$ 3 S_1 M. Sanchez del Rio, SPIE, 3448, 3 230-245, 1998 2 Optimal location for DCM: 32m from source point at 43m imaging point Universität Karlsruhe (TH) Forschungszentrum Karlsruhe

KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH)

in der Helmholtz-Gemeinschaft

Forschungsuniversität • gegründet 1825

CM

wiggler source, 1m long CM, 2.1mrad incident angle, Pt

No	energy (eV)	mono	image x×z	image x'×z'	E eV	High energy resolution, high energy & high
1	8000±15	DCM Si111	20.0×0.175 186	2.96×0.010 186	1.1	harmonics cut off Coherence deterioration,
2	25000±10	DCM Si311	16.6×0.182 422	2.49×0.078 422	1.7	Beam vertical offset (9cm at 43m)

A correlation for horizontal and vertical size? Beam profile xz at 43m 25 keV 8keV Universität Karlsruhe (TH) Forschungszentrum Karlsruhe KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) in der Helmholtz-Gemeinschaft Forschungsuniversität • gegründet 1825

Source+CM+DCM+focusing

Compound Refractive Lens (CRL)

CRL: Focusing, collimating and energy filtering

CRL as a collimator or focusing element

Source size RMS: 0.045mm, 25keV CRL: R=0.4mm, Be, d=0.1mm, p (source-CRL distance)=18m

Water-cooling?

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

High power heat load

Total power Wiggler: 12 kW, undulator: 850W

CVD diamond window, NANO beamline, ANKA

XOP

Forschungszentrum Karlsruhe
 in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH) Forschungsuniversität - gegründet 1825

Photon shutter: Finite element analysis

Power density: 150 w/mm², Gaussian function 0.14 0.12 0.10 0.08 0.06 0.04 0.02 power density kW/mm² Standard component at APS front end 0.00-Cooling water 0 0 0 0 0 0 -10 10 -20 20 0000000 -2--2 power vertical position (mm) OFHC Cu r density kW/mm² 0-0 Glidcop 2-2 horizontal position (mm) Universität Karlsruhe (TH) Forschungszentrum Karlsruhe KIT – die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) in der Helmholtz-Gemeinschaft Forschungsuniversität • gegründet 1825

Acknowledgements

R. Steininger, E. Huttel, S. Casalbuoni, U. Herberger, S. Bauer, Institute for Synchrotron Radiation ISS/ANKA - Forschungszentrum Karlsruhe

Universität Karlsruhe (TH) Forschungsuniversität - gegründet 1825