Focus - a new wavefront Propagation Code

M A Bowler, S P Higgins
 Daresbury Laboratory

Rationale for new code

Wavefront propagation workshop at Daresbury in Nov 2005.

At that time, could not easily include optics with 'real' surfaces in codes commonly in use in SR community.

New Code

- Flexible surface description

- Keep approximations to the minimum. Simple 'brute force' method propagate from each point on one surface to each point on the following
- Intended for investigating the effect of imperfect surfaces, not for design work
- Needs to inter-work with other codes such as PHASE, SRW, Genesis1.3

Written by Steven Higgins

Code Outline

- The beamline is represented by a set of surfaces; a source surface, any optics and then an image surface
- The Sommerfeld Propagation Integral is used for propagation from every position R on a surface to each point r on the next surface

$$
E(\vec{r})=-\frac{i}{\lambda} \oiint_{\text {aperture }} \vec{E}(\vec{R}) \frac{[\vec{R}-\vec{r}] \cdot \hat{n} e^{i k|\vec{R}-\vec{r}|}}{|\vec{R}-\vec{r}|^{2}} \cdot \overrightarrow{d a}
$$

where da is a surface element on an aperture (surface), λ is the wavelength, n is the normal to the surface, and the dot product gives the obliquity factor.

- The main approximation is that the radiation field and surfaces are represented as values on a grid of points.

Code Outline - source field

Input - the complex values of the field at a grid of point in the input plane which can either be

Read from files

or
Generated internally for a Gaussian source
FILE format.

1) set of ascii files for the real and imaginary parts of the field for orthogonal polarisations for each wavelength- same format as PHASE code Bahrdt [1]
2) binary file, one for each polarisation generated, each record containing the complex field values for a given wavelength

Both types of file can be generated from the 3D fields from Genesis1.3, using an intermediate code which Fourier transforms the input fields to the frequency domain and inversely transforms the fields after propagation to retrieve the 3D field.

1. J Bahrdt, Appl Optics 34, 114 (1995), Appl Optics 36, 4367 (1997)

Code outline - optical surfaces

Optical elements can be:
Mirrors - the reflected radiation is propagated
Plane windows - the transmitted radiation is propagated
The optical surface is described by either:
a shape - plane, ellipsoid, torroid
or
A 3D grid of points read from file
Reflectivity or transmission efficiency can be included.
The field cannot be propagated across a thin window as ghosting occurs, so the radiation is ray traced to the exit plane of the window.

A slope error can be added to the perfect surfaces

Slope errors

The deviation from a perfect surface is generated by adding a set of randomly orientated ripples. The amplitude of the ripples is based on the 1-D equation [2]

$$
\operatorname{PSD}(f)=C\left(\frac{f_{0}}{f_{0}+f}\right)^{\alpha}
$$

where f0 is the cut-off frequency and α gives the decay. Expect $1<\alpha<2$
The slope error is obtained by inversely Fourier Transforming a 2-D power spectral density based on the above equation, and adding the result to the surface along the direction of the normal. The overall amplitude of the surface displacement is adjusted to obtain the required rms slope error.
2. J. E. Harvey, Appl. Opt. 34, 3715 (1995)

Surface displacements for different f_{0} and α with the same rms slope error. Low frequency errors are more important for larger α and smaller f_{0}

Slope error $2.5 \mu \mathrm{rad}, \alpha=2, \mathrm{f}_{0}=0.16 \mathrm{~mm}^{-1}$

2D frequency distribution

Slope error $2.5 \mu \mathrm{rad}, \alpha=1, \mathrm{f}_{0}=0.33 \mathrm{~mm}^{-1}$

Code outline implementation

- The code is written in standard C++ and runs under windows or Linux
- Simple text control file is used for ease of conversion to other operating systems.
- The visualisation of the output field files has been done using standalone IDL codes
- FOCUS can generate report files for the field at each surface
- The grid representing a surface can be output.
- The field at the image plane is output, either to ascii or binary files

```
begin beamline
interpolated phase source
eyre=phase_files\EYRES00001.DA0
eyim=phase_files\EYIMS00001.DA0
ezre=phase_files\EZRES00001.DA0
ezim=phase_files\EZIMS00001.DAO
new u size=151
new v size=151
new width=0.52mm
new height \(=0.75 \mathrm{~mm}\)
surface Andy Smith's Mirror
u size=101
v size=201
transverse size=30
longitudinal size=70
refractive indicies=1.0 0.915+i0.0352
\(x\) position=50m
y position=0
z position=0
source focal length=50m
image focal length \(=0.155 \mathrm{~m}\)
yz rotation=90deg
xz angle of incidence=75deg
elliptical
```


Applications

- High power beamline on an XUV FEL - uses model slope errors
- Test case for XFEL mirror - uses real 1D mirror profile (talk by David Laundy)
- Coherent synchrotron radiation - THz propagation

High Field beamline on XUVFEL

- Aim - to achieve power densities > $10^{16} \mathrm{~W} / \mathrm{cm}^{2}$ at the sample
- Radiation source - 100 eV pulse of radiation from seeded XUVFEL on 4GLS, obtained at end of FEL using Genesis 1.3 [3] (fields supplied by D Dunning)
- Key optic - highly demagnifying elliptical mirror.
- Specification from earlier ray tracing work using SHADOW (A Smith)
- Source distance - 50 m
- Image distance - 0.155 m
- Grazing angle 15°
- Mirror length - 70 mm
- Slope error - $2.5 \mu \mathrm{rad}$
- Horizontally deflecting
- Gold coated
- Focal spot size determined by slope error of mirror - $2.5 \mu \mathrm{rad}$ thought to be achievable for 'short' mirror.

3. S. Reiche, Nucl. Instr. Meth. A429, 243 (1999)

XUV-FEL - Input field

Input pulse Fourier transformed to get the wavelength components.

Input field had 2050 'time slices' spaced at 0.0413fs.

Field as a function of time at peak position

Propagated 230 energy ‘slices’ from 90.2376 eV to 101.1416 eV

Input grid too coarse - field interpolated using FOCUS to finer mesh.

Interpolated mesh 151*151 points over 0.52 by $0.75 \mathrm{~mm}^{2}$

Time to propagate each energy approximately 4 minutes

Intensity (a.u.)at 100 eV at exit of FEL

Focal spots for mirrors with different slope errors

$$
\begin{aligned}
& f 0=0.33 \mathrm{~mm}-1 \alpha=1 \\
& (\sim 23 \text { periods along mirror) }
\end{aligned}
$$

$$
f 0=0.16 \mathrm{~mm}-1 \alpha=2
$$

exos ESRF

Focus properties (100 eV)

$\begin{aligned} & \mathrm{f}_{0} \\ & (1 / \mathrm{mm}) \end{aligned}$	α	Slope error ($\mu \mathrm{rad}$)	Power in $7 \quad * \quad 7 \quad \mu m^{2}$ image plane (a.u.)	Peak value of intensity (a.u.)	Rms size of central peak From Gaussian fit. ($\mu \mathrm{m}^{2}$)
-	-	0	8364		$0.134 * 0.194$
0.33	1	2.5	8277	3.5	0.135*0.195
0.33	2	2.5	8266	3.3	0.135 * 0.202
0.16	1	2.5	8274	3.4	0.135 * 0.196
0.16	2	2.5	8272	3.04	0.137 * 0.21
0.067	2	2.5	8288	2.45	$0.141 * 0.227$
0.33	1	10.0	7101	2.4	0.136*0.203
0.16	2	10.0	6898	0.44	0.194*?

- Slope error of $2.5 \mu \mathrm{rad}$ does not affect the peak intensity significantly except for slope errors dominated by low frequencies
-Need to know the frequency distribution of the slope error

Comparison with analytical estimates

Input source size 63 * $43 \mu \mathrm{~m}^{2}$, demagnification 322
rms image size allowing for slope error δ

$$
\begin{array}{cl}
\sigma_{1}=\sqrt{ }\left[\sigma_{\mathrm{o}}^{2}+\left(2^{*} \mathrm{r}^{*} \delta\right)^{2}\right] & \text { Longitudinal } \\
\sigma_{\mathrm{t}}=\sqrt{ }\left[{\sigma_{\mathrm{o}}^{2}}^{2}+\left(2^{*} \mathrm{r}^{*} \delta^{*} \sin \phi\right)^{2}\right] . & \text { Transverse }
\end{array}
$$

	Analytical	From FOCUS
rms focus size - no slope error	$0.133 * 0.196 \mu \mathrm{~m}^{2}$	$0.134 * 0.194 \mu \mathrm{~m}^{2}$
rms focus size -2.5 μ rad slope error	$0.28 * 0.8 \mu \mathrm{~m}^{2}$	$0.25 * 0.60 \mu \mathrm{~m}^{2 \$}$

\$ Value found in image plane large enough to capture > 99.9\% of radiation

Pulse length at focus

rms slope error $=2.5 \mu \mathrm{rad}$, $f 0=0.33 \mathrm{~mm}-1, \alpha=2$

rms slope error $=10 \mu \mathrm{rad}$,
$f 0=0.16 \mathrm{~mm}-1, \alpha=2$.

Absolute value of the field in the pixel with maximum intensity (not including reflectivity of mirror)

Pulse Properties

Which pulse	rms intensity pulse length Summed over all pixels (fs)	rms length of abs(field) pulse In pixel of maximum field (fs)	Max Intensity (including reflectivity losses) (W/cm²)
Input	1.64	2.52	$3.1 * 10^{12}$
At focus, slope error 2.5 urad	1.64	2.52	$2.7 * 10^{17}$
At focus, slope error 130312009	1.65	2.57	$0.36 * 10^{17}$

Time profile as a function of position

rms slope error $2.5 \mu \mathrm{rad}$

Coherent Synchrotron Radiation.

SR coherent at wavelengths longer than the electron bunch
In ALICE, the Energy Recovery Linac at Daresbury, the expected

Output for a 600 fs 80pC Gaussian bunch

Modelling of CSR transport

- Diffraction, at the extraction aperture and mirrors is important.
- The beamline was designed with the tangent point as the source position - waist positions occur at 'nominal foci' only for shorter wavelengths
- SRW [4] used to calculate the radiation field distribution at a $36 * 36 \mathrm{~mm}^{2}$ extraction aperture, 0.505 m from the tangent point.
- FOCUS used to propagate across M1, M3 and M5 to $2 m$ beyond M5.

Intensity (a.u) of horizontally polarised radiation at the nominal focal position of M3

Modelling of CSR transport

'Intensity' of $0.8 \mathrm{meV}(1.5 \mathrm{~mm})$ radiation 2 m beyond the collimating mirror.
See edge diffraction from over-filling the collimating mirror.
4. O. Chubar, P Elleaume, EPAC-98 Proceedings, p1177 (1998)

Summary

The code is in the final testing stages
Three different cases have been undertaken so far

- Input fields from Genesis1.3, model slope errors for mirrors
- Internally generated Gaussian field, input 1D mirror profile from metrology
- Input fields from SRW, long wavelength for which diffraction important.

Thank you for your attention

