

Characterizing x-ray mirrors in reciprocal space

Preliminary results from the NIST

X-ray Optics Evaluation Double-Crystal Diffractometer

D.L. Gil, D. Windover, J.P. Cline, A. Henins

National Institute of Standards and Technology Gaithersburg, MD

Introduction

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Old NIST PBPD instrument

- Deslattes et al. demonstrated the usefulness of PGM optics for high-accuracy PD lattice parameter measurement
- Certification of SRMs 640c and 660a
- Difficulties in modeling due to unknown beam character

Character of parabolic graded multilayer mirrors in reciprocal space

- Character of mirror source is very different from bare anodes
 - PGMs provide high reflectivity by diffraction
 - Diffraction implies dispersion
- Wavelength/divergence character needed for data analysis

Questions for using PGMs for x-ray metrology applications

- Many questions
 - When is a PGM aligned "well"?
 - What do you need to do to align a PGM?
 - Typical approach is purely intensity based
 - Does maximizing intensity uniquely specify wavelength/divergence character?
 - How sensitive are PGMs to drift?
 - Stability
 - Cold alignment
- The question: What is the wavelength/divergence character of the beam produced by PGM as alignment is varied?

The question for using PGMs for x-ray metrology

- What is the wavelength/divergence character of the beam produced by PGM as alignment is varied?
- Previous studies
 - Most work on graded multilayer optics has concerned spatial characteristics (usually for a single wavelength)
 - Toraya and Hibino (2000) performed very useful single-crystal study of PGMs
- How to answer the question?
 - An instrument that can position a PGM in its six DOF and measure its wavelength/divergence character
 - Experiment designs to explore eight-dimensional space

The NIST X-ray Optics Evaluation Double-Crystal Diffractometer

Instrument

XOEDCD overview picture

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Six-axis mirror mount

- Stepper motor driven New Focus five-axis kinematic alignment stage
- Servo drivenPhysik Instrumentetangent arm
- Accuracy studied by autocollimator measurements

Technology Administration, U.S. Department of Commerce

Six-axis stage directions of motion

θ

Z

y

X

X Tilt

φ Azimuth

X-ray mirror

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

from Toraya and Hibino (2000), 1318

F(p/2, 0)

Approaches to exploring the six-dimensional mirror position space

Experiment Design

Approach to data collection

- Costs of data collection
 - Define k as the number of mirror positions
 - Define n as the number of analyzer crystal steps; typically greater than 50
- Types of scan (costs in seconds)
 - ₹otal reflected intensity: 6k
 - Single-crystal scan: (1.5n + 6)k
 - Double-crystal scan: $(1.5n^2 + 6)k$
- Scans become rapidly more costly
 - Souse cheap scans to target expensive scans

Experiment Designs

- Single-axis variation
 - If effects of axes are completely uncorrelated, find maximum of intensity and scan each axis separately
 - But if there's correlation, this produces wrong estimates of effects
- Factorial and fractional factorial designs
 - Effective, easy to interpret conventional statistical designs
 - Typically only used for 2, occasionally 3 levels
- Monte Carlo and Quasi-Monte Carlo methods

Monte Carlo and Quasi-Monte Carlo

- Monte Carlo
 - Random sampling of space
 - Easy method: just pick uniformly distributed random deviates
- Quasi-Monte Carlo
 - Low-discrepancy random numbers: fills the space uniformly
 - Sequential: can terminate at any time and still have a 'fair' sample

Theta angle versus z position scatter plot movie

Results from Quasi-Monte Carlo study of the variation of total reflected intensity with mirror position

Data

Two-dimensional hexagonal bin plots

Toraya and Hibino: Theta angle and z position

Figure 1
Geometrical arrangement of the X-ray focus and the parabolic graded multilayer (PGM).

from Toraya and Hibino (2000), 1318

Theta angle versus z position

Two-dimensional hexagonal bin plots

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Six-axis stage directions of motion: theta angle and chi angle

Chi angle versus theta angle

Counts over time

Aug. 2008 intensity collection

Reciprocal space maps of wavelength/divergence character

Double-crystal data

RSM: well-aligned

RSM: misaligned

RSM: very misaligned

Conclusions

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Conclusions and plans

- Conclusions
 - QMC is an easy way to sample a high-dimensional alignment space
 - Results can reveal correlations between parameters, or drift over time
 - Initial collections of double-crystal data show interesting structure
- Future plans
 - Collection of representative set of RSMs
 - Quantitative analysis of RSMs

Contributions

- Donald Windover, co-leader of the XRM project, performed an initial demonstration of the instrument in 2003 and assisted in the alignment for the data presented here;
- Albert Henins designed and built the DCD, and cut the silicon channels;
- and Jim Cline, co-leader of the XRM project, developed the DCD strategy in collaboration with Dick Deslattes.

Fin

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Supplemental Material

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Single crystal rocking curve of first monochromator crystal

Metrological aspects of high-resolution double crystal spectrometry

- Goniometers
 - Micro-Controle stages driven by harmonic drive steppers
 - Heidenhain 800 optical encoders
- Crystals
 - From 640d boules: d-spacing known
 - Si (440) three-bounce channels
 - High resolution, narrow tails

Chi angle: scatter plot versus weighted histogram plot

Powder diffraction SRMs planned for recertification on CDPBD

Diffraction Application	SRM Number	Composition
Line Position	640d	Silicon Powder
Line Shape	660b	LaB ₆ Powder
Instrument Response	1976a	Sintered Alumina Plate
Quantitative Analysis	676a	Alumina (corundum) Powder

Factorial and fractional factorial experiment designs

- Factorial and fractional factorial designs
 - Effective, easy to interpret conventional statistical designs
 - Typically only used for 2, occasionally 3 levels
- Factorial designs are just multi-dimensional grids

Diagram of old NIST Parallel Beam Powder Diffractometer

Diagram of old NIST Parallel Beam Powder Diffractometer primary x-ray beam optics

Primary X-ray Beam Optics for NIST Parallel Beam Powder Diffractometer

Cross section of parallel x-rays: about 0.7 x 15 mm Flux = 5 GHz @ 2 kW. Energy window = 40 eV

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Example autocollimator data

NIST CDPBD

- Rigorously characterized Heidenhain 905s
- Spherical air bearing for alignment
- In AML +-0.01 C space
- Multiple configurations
 - HRXRD
 - XRR
 - PD

XOEDCD, non-dispersive configuration

Graded multilayer x-ray optics

- Shaped substrates deposited with periodic multilayer of varying d-spacing for high reflectivity
- Becoming ubiquitous for laboratory x-ray instruments
- Improved source quality over other optics options
 - Customized divergence and source size
 - Somewhat monochromated beam (Δd/d ~ 10%)
- Two-dimensional parabola for beam collimated in one axis

Three-dimensional optics beginning to appear

Images from http://www.incoatec.de/GoebelMirrors 36.html and http://www.xenocs.com/range-2D-diffraction-optics.htm

XOEDCD, dispersive configuration

Parabolic graded multilayer x-ray optics for powder diffraction

- Conventional powder diffraction optics: focusing
- Parabolic graded multilayers
 - Low divergence
 - Higher resolution

Study of the variation of total reflected intensity with mirror position

- Detector placed directly in front of six-axis mirror housing
 - Source at @??
 - Attenuating foil used to bring counts down into range of detector
- @ Picture of detector in front of mirror housing

Two-dimensional hexagonal bin plots

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Six-axis stage directions of motion: x position and y position

x position versus y position

Counts over time

Feb. 2009 intensity collection

