Grenoble High Magnetic Field Laboratory

Laboratoire des Champs Magnétiques Intenses
Hochfeld Magnetlabor

MAGNET FIELD MAPPING AND CALIBRATION SYSTEM AT GHMFL

Philippe SALA

I. System currently in use

II. New prototype design

System diagram and features

★ Coil parameters :

. 600 turns 2

. NS = 1018 cm

. thickness = 1mm

★ Encoder resolution : 5 µm

★ Travel length: 390 mm

★ Speed: 4 mm/s

★ Use of low level C programming control and acquisition software

Main applications

Magnet Field mapping:

- ★Minimum space integration interval = encoder resolution (5 µm)
 - → Practical value (limited mostly by magnet current noise) = 0.1 mm
- ★Magnet current drift effects minimized by coil motion speed involving fast acquisition (40 points/s)
- ★Apparatus drift effects (integrator offset) minimized by averaging up and down motion measurements
- ★All distances are referenced to the encoder index (zero)
- ⇒ Maps for different coaxial magnets enable magnetic centers alignment
- ★Mapping is linked to absolute field units by measuring field in center
 - → This is done after center position determination by :
 - 1- Moving the coil accurately in the center (encoder software feedback)
 - 2- Determining magnet field factor (field over current ratio)

Coil motion and positioning:

- ★Feedback and regulation done by software from encoder reading
 - → Positionning at +/- 5 µm

Magnet Field factor measurement:

- ★Power supply trapezoidal modulation cycles
 - → Maximum ramp slope dl/dt = 200 A/s
- ★Software modulation control and data treatment with:
 - → Amplitude flat top levels averaging procedure to minimize power supply regulation "overshoots" effects
 - → Averaging of up and down cycles to cancel drift effects
- ★Range of field factors of 10 MW resistive magnets ≈ 3 to 11 Gauss/A

Field factor determination using modulation cycles (+/- 2 KA) on M6 magnet

Effects of a misalignment of inner and outer coils on a homogeneous magnet (M5)

METHOD FOR REFERENCING MAGNETIC CENTER POSITION

X: difficult to measure precisely (or variable)

H0: precisely known (gauge)

1- B0 field alone (\sim 10 Gauss) \longrightarrow Z0 \longrightarrow X = H0 - Z0

2- M magnet field alone \longrightarrow Z \longrightarrow H = Z + X = Z + H0 - Z0

New mechanical motion system prototype

Reasons for a new system:

- ★Spare parts for current system now hard to find
- ★Current mechanical structure is big and heavy
 - →Difficulties for transportation and mounting on different magnet sites
- ★Global measurement system has high performances but now limited by mechanical system

New design orientations:

- ★Non magnetic lightweight and compact structure but with high stiffness and dimensional stability
- ★Easy and direct mounting on different magnet sites in the lab
- ★High speed motion over the entire travel length (>300 mm)
- ★Alternative application as a "simple" high resolution positionning system for other types of probes (NMR,...)
- ★No rotation/translation conversion wanted (linear motor)
 - ⇒ Design of a prototype using a piezoelectric linear motor

Prototype main features

Main general features of piezoelectric motors:

- **★**High resolution positionning
- **★**No magnetic field sensitivity / generation
- **★Wide dynamic range of velocity**
- ★Inherent brake at power off (preload)

<u>Linear piezoelectric motor main additional features :</u>

- **★No magnetic parts**
- **★Theoretical resolution: 5 nm**
- ★Theoretical maximum speed : 230 mm/s

Practical limitations:

- ★No "off-the shelf " mechanical solutions commercially available
- ★Mechanical linear guiding system must be designed for application
- ★Real performances depend highly on mechanical design and control
- **★Most applications limited to low travel and loads (micropositionning)**

Particular problems for prototype design:

- ★Vertical motion (strong influence of weight of all moving parts)
- **★**No magnetic parts wanted for the complete system
- **★**"Long" travel length

Linear stage motor mounting

alumina of the plate inger tips under preload

by 2 quadrature suus waves at ~ 40 KHz)

Mechanical design: Major problems and solutions

2-Static friction (stick-slip) created by preload :

> 2 linear ceramic ball (micro)bearings on cuproberyllium V rail

3-Stiffness and dimensional stability:

- Parallelism tolerances + flexion deformation < 10 μm/100 mm
- Thermal stability of distance measurement
- > Use of machined carbon/epoxy profiles

Other prototype features and performances:

- > Magnetic center position referencing tool integrated (active coil)
- > Travel length: 326 mm
- > Maximum "usefull" mass ~ 0.9 kg

14

FUTURE DEVELOPMENTS

- Main Feasability Study OK
- Performances depend now on closed loop feed back

1-Distance measurement:

Use of a non contact optical linear encoder with no magnetic parts

2-Control: 2 types of solutions:

B: Regulation with controller chip (digital PID microcontroller)

B gives a higher loop frequency (better response time and resolution)

3-Software:

Modification of existing software for position and speed control