

A Test Bench for the Warm Magnetic Measurement of the LHC-Corrector Magnets in Industry

F.Patru, C.Giloux, R.Senis, L.Walckiers for the LHC-MTA group

Summary

- Introduction
- Corrector magnets to measure
- Standard measurement and objectives
- 1st generation (positioning)
- Calibration of the bench
- 2nd generation (positioning)

Introduction

- LHC: more than 3500 corrector magnets
- Series production in industry
- Testing in industry and at CERN
- Control of the magnetic field quality
- Control of the magnetic axes position for alignment (< 0.1 mm)

Corrector magnets to measure

Lattice:Orbit (H&V):Multipol:

- MQTL

- MQT

- MQS

- MQSX

- MQSXA

-MS

- MSS

- MO

- MCB

- MCBC

- MCBR

- MCBY

- MSCB

- MCBX

- MCBXA

- MCD

- MCO

- MCS

- MCOX

- MCSX

- MCTX

- MCOSX

- MCSSX

Corrector magnets to measure

Magnets	MCS	MCDO	MO	MS	СВ	MCBC	MCBY	MQT	MQTL	MCBX	MCBXA	MQSXA
						MCBR		MQS				
Nested windings		MCD		MCB	MS(S)						MCBX	MQSX
		MCO									MCTX	MCOSX
											MCSX	MCOX
												MCSSX
Main harmonics	В3	B5, B4	B4	B1	В3	B1	B1	B2	B2	B1	B1,B6,B3	B2,B4,B4,B3
N magnets	2464	1232	176	752	752	172	80	448	120	27	9	9
Lengh [mm]	160	110	366	785.2	455	1099	1100	365	1391	700	700	530
Diameter[mm]	120	115	104	185.6	185.6	187.6	187.4	135	135	350	350	180
Weight [Kg]			8	135	75	200	200	25	95			
positioning	holes	holes	keys	keys	keys	keys	keys	keys	keys	holes	holes	holes

Standard measurements

- In the industry (all magnets):
 - Warm measurements
 - Quench tests at 4.2 K
 - Warm measurements
- At Cern (2 to 10 % of the magnets):
 - Warm measurements
 - Quench and magnetic measurements at 1.9 K
 - Warm measurements

Objectives

- Check field quality at room temperature
- Quick measurement : around 5 minutes
- Simple for use in industry

The bench measures:

- the strength of the main field
- the level of harmonics up to order 15
- the axis position and orientation of the main field with respect to the mechanical references

(Specification for magnets : 0.1 mm)

1st generation

1st generation: positioning

Calibration of the bench

Calibration of the bench

Calibration of the bench

Calculation

•
$$\Delta X_{Bench} = (X_{m1} + X_{m2} - \epsilon)/2$$

• $\Delta Y_{Bench} = (Y_{m1} + Y_{m2} - \epsilon)/2$

$$\bullet \ \Delta\theta_{\rm Bench} = (\theta_{\rm m1} + \theta_{\rm m2})/2$$

•
$$\Delta \mathbf{X}_{\mathrm{Magnet}} = \mathbf{X}_{\mathrm{meas}}$$
 - $\Delta \mathbf{X}_{\mathrm{Bench}}$

$$ullet$$
 $\Delta \mathbf{Y}_{ ext{Magnet}} = \mathbf{Y}_{ ext{meas}}$ - $\Delta \mathbf{Y}_{ ext{Bench}}$

•
$$\Delta\theta_{\mathrm{Magnet}} = \theta_{\mathrm{meas}}$$
 - $\Delta\theta_{\mathrm{Bench}}$

Results of 1st generation benches

	St. dev. on a Bench	Max. dev. between benches over preseries magnets	Specification
dx axis offset	5 μm	30 μm	0.1 mm
dy axis offset	5 μm	21 μm	0.1 mm
$d\theta$ B_n orientation	0.05 mrad	0.2 mrad	1.5 mrad
B _n (main field)	10 ⁻⁹ Tm/A	2 10 ⁻⁷ Tm/A	9.7 10 ⁻⁵ Tm/A
B_m , A_n $(n \neq m)$	10 ⁻¹⁰ Tm/A	10 ⁻⁹ Tm/A	< 10 ⁻⁶ Tm/A

2nd generation

2nd generation: positioning

2nd generation: positioning

2nd generation: first results

- Testing with mechanical comparator:
 - open & close grippers : dispersion < 10 μm
 - default of 1 mm on the collar : dispersion $< 50 \mu m$
- Testing with permanent magnets and measuring coils : open & close grippers : dispersion $< 10 \ \mu m$

 \Rightarrow 15 other benches to do