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Pure Permanent Magnet IDs (PPM)

Simple structures /\Magnet blocks
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80 % of ESRF IDS




Hybrid IDs

Magnet material
-NdFeB
-Sm2Col7

Pole material
-Fe-Co
-low carbon steel

20 % of ESRF IDS

Magnet blocks Soft iron poles

——————————————— electron beam—-->



ID specifications

ID residual interaction
with stored beam should
be negligible.

In particular:
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Also important for the users
--> closed orbit modifications induced by an ID segment can be seen by all the users
around the ring



ID magnetic design

Two main goals

1- User requirements (X -rays properties)

- Photon flux versus energy

- Photon energy range involve essentially

- Heat load limitations the nominal periodic part
- polarization

2 - Minimize systematic interaction with the stored beam

- Field integral at field terminations (complicated)

- non linear effect (focusing) in some cases




Design of periodic part

Essentially maximum field & minimum period

Presently easy in 3D
- symmetries reduce the size of problem

- 1/4 of period longitudinally

Input
- geometry (parametrization is important )
- magnetic properties

-Magnet blocks (mostly linear anisotropic)

Radia calculations

-Soft magnetic material (non linear) 06,
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- reasonable magnet block geometry

- available magnetic material properties
- remanence
- coercivity 0 1




Design of end field parts

Goal: control the entry/exit sequence to:
- Minimize field integral
- Comes from non unit permeability of magnet material
- More complicated for hybrid than for p.p.m.

- Minimize beam offset (2nd integral)

- Provide optical phasing between segmented

undulators
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- involve a model with several periods 0.6
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Passive field terminations for ppm IDs

Conventional field termination (TYPE A)
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End field structrures for ppm IDs
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period 40 mm

P.M material: NdFeB
Br=1.15T

Parallel permeability =1.06
Transverse permeability =1.17

Blocks size (Hor.*Vert.*long.):
55 mm*20 mm *10 mm

End field structures of type B or C are systematically used on ppm ESRF undulators

-simplify field int¢ ~ correction during magnetic measurements

-no need of active (coil) correction vs.gap




Field integral measurements

- Measurement of integrated dipole versus transverse position:
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based on flip coil or streched wire



Local integral measurements

- Integrate voltage /90 degree : 8 values V;

Integrated dipole
Horizontal
V- 3
1.(x,z)="" 5?6 123’4,7,8
Vertical
V-3V
T

Takes = 20 sec/point




Field integral scans

Two methods

1 Local measurement at each grid point (point by point)

-Time consuming =15 minutes (100 mm, 2.5 mm steps, 41 pts)

2- Fast scans

--> Speed up measurements
-55 sec for 41 pts
-needs timing control

Mostly used



Field integral bench

Positioning accuracy not
critical :

+02mmin X &7
+ 0.1 degre in O

are sufficient
3 1dentical units in the

ESRF ID magnetic
measurment lab.
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Field integral bench performances

In the range + 150 G.cm
Both scanning methods agree well (£ 4 Gem)

Repeatability
+ 2 Gcem for local measurement

+ 4 G.cm for fast scans

Remark: Second field integral can be measured using twisted coil (easy)




I_ocal measurements

;:> Presently based on Hall sensors (KSY 14)

3 components of magnetic field needed

- Enable correction of sensors angular errors
- Enable non linear corrections (planar hall effect)

Accuracy on longitudinal position is important
- =100-200 T/m field gradient
- Needs linear encoder (optical ruler or interferometer)

Accuracy on transverse position 1s not critical
- + 0.Imm is enough

Fast field mapping is essential



Hall probe bench

“on the fly” measurement

-Speed up to 30 mm/sec
-2500-5000 pts
per field component

Typical scan

-L=2500 mm
-1 pt/mm/comp.
-V=20 mm/sec
-~ 2 mn

3 similar units in the ESRF
ID laboratory
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linear encoder/

Axis control
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Hall data acquisition

ﬁFourier transform of the magnetic field gives many informations on
non linearity of hall sensors (even harmonics for ex.)

The main goal in data treatment:
- investigate "random" angular quicks along ID field (trajectory)
- calculation of optical phase error

What 1s observed 7 (B < 1T)
- reproducible field integral calculated from hall data (stable within 10 G.cm)
- but always different (= 0.5 G.m) from coil measurements ( non linearity of hall
SENsors)
Correction of hall data :

- Hall data are systematically corrected so that the calculated field integrals are equal
to coil measurements (quadratic correction)



Hall data processing
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Coil and Hall probe benches




Hall probe keeper




ID field correction

The main source of errors

-Magnet block properties (homogeneity of magnetization) are
inconsistent with required ID field quality

-The usual block measurements by Helmotz coil give averaged

magnetic data
-Necessary
-But far from being sufficient

The electron beam "sees" locally the
magnet blocks.

2.5-8 mm
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Magnet blocks

Looking locally magnet blocks
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ID field correction

Field integral
- ---> Cancel integrated dipole versus horizontal position

- Cancel also higher order multipoles

Method

1 -Using field integral scans on single blocks and/or sub assemblies (modules)

- Time consuming for magnet blocks measurements but reduce considerably the following method
- Presently under development for the production of in vacuum undulators
- Seems to be a promising method

2- Using “multipole shimming”
- with magnet block displacements

- but mostly with soft iron shims

Routinely applied on all ESRF IDs



ID field integral correction

Soft iron
shims

Multipole shimming

-Linearity with thickness (0.2 mm max)
-needs a few iterations
-Shims “signatures” can be calculated using RADIA
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ID field correction

Local field correction

- ---> Cancel optical phase error at each pole

- Using mostly small (0.1 mm) vertical block displacements
- Or soft iron shims optionally

Method is easy: I

-Linearity with displacement or
- shim thickness

-need a few iterations

-correct also trajectory

Phase error

Routinely applied on ESRF
undulators




ID local tield correction

Spectrum/phase shimming
- ---> blocks displacements and shim effects can be computed (RADIA)

Rms phase error [degree]

- takes a few iterations

- R.m.s phase error easily reduced < 2 degree
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Undulator: period 35 mm, L=1.6 m, gap 11 mm



ID local tield correction

0.4 i Undulator
. - period 35 mm, L=1.6 m
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Installed IDs on the ESRF ring
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Photon energy range:
42 0.3 to 200 keV



In Vacuum undulators

Length: 2 m, min gap: 6 mm
- 2 devices installed (period 23 mm)

- 3 devices under construction: period 17,18 & 21 mm




Summary/conclusion

1-Numerical simulations are essential in IDs construction
- at design stage for the elimination of undesirable systematic effects
- during the field correction using various shimming methods

2-Magnetic measurement equipment
- Simple and reliable tools in "production' context
- measurement speed is important

3- Field correction
- Mostly dominated by magnet blocks properties
- probable need for specific magnet block characterization



