

Overview

- Beamline optimised for
 - Stability
 - Reliability
 - Usability
- · Ease of use through automation of
 - Data collection
 - Data reduction
 - Data processing
 - Data analysis
- · Confidence in experiments through feedback
 - User oriented focus to guide users
 - · In experiment preparation
 - Data acquisition

Current status of data collection:

Temperature

- Data acquisition between 4 and 60 C
- SEC operation at 4 or 20 degrees C

Exposure Time

- Standard 1 FPS (10 frames for Static)
 - S200 column ~1 hour (3600 frames)
 - Increase column ~10 mins (600 frames)

Sample Volume

- Minimum recommended 30 µL per measurement
 - Approx. 5 mg/mL
 - 100 µL stock recommended
 - for static and SEC

Automated valve

To switch between SEC and Static modes

Gives users control Safe and reliable switching Maximises efficiency cleaning between SEC runs

EMBL

Fully Automated Data Collection

LIMS database to store:

- · Sample definitions
- · Shipping details
- · Experimental data
- · Processing results

The ISPyB data base was designed to for MX and was adapted for bioSAXS

Collaboration between EMBL (GR and HH) and Diamond funded by BioSTRUCT-X

EMBL ...

Improved feedback for experimental preparation BIOSAXS Experiment Designer Define only the macromolecule's measurement you want to make. This wizard will add buffers' measurement needed for substraction automatically. Single Measurement | Concentration Series How many unknow concentrations do you have?: Exposure. Temp.: 4 Vol. To Load (μl): 50 Transmission 100 Specimen Parameters Conc. (mg/ml) Exp. Temp. Vol. Load Trans. Wait T. Flow PGK 1.000 AMP 4.00 c 50.00 μl 100 % yes 2.000 AMP ■ PGK 4.00 c 50.00 μl 100 % 3.000 50.00 μl 100 %

EMBL

Improved feedback for experimental preparation

Estimation of required Volume	
Go to Shipment	
Specimen _	Estimated Volume
■ ATP	300.00 μl
PGK+ATP	150.00 µl
■ PGK + common buffer	150.00 μι
■ PGK+p38buffer	150.00 μι
common buffer	300.00 μΙ
■ p38buffer	300.00 μΙ

Improved feedback with ISPyB

Advanced analysis with aditional information

A simple example of what can be done with information from complimentary techniques!

Fitting to known structures!

Automated processing can be extended:

Additional information such as PDB's of possible conformations

Experimental X-ray scattering of the PYR1 protein in solution in the presence of 1mM (+) ABA.

Scattering curves for possible ensembles were calculated.

Only the curve for ensembles AB/CD produced a good fit to the experimental data (χ =0.72)

SAXS demonstrated that the AB ensemble corresponds to the biologically relevant form found under physiological conditions.

Online / Offline Data processing

Online Processing essential for fast feedback check for data integrity radiation damage concentration effects appropriate background measurements

Reprocessing datasets if needed

More in-depth analysis can be done but is more time consuming

More comprehensive feedback

Use of a priori information for advanced analysis

Acknowledgments

diamond

EMBL ...

