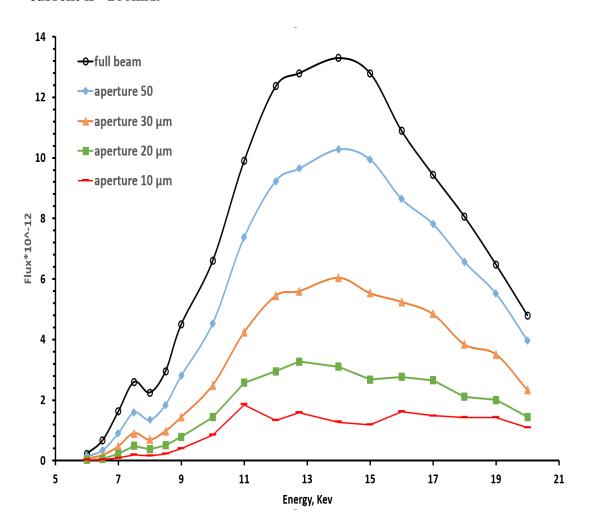

ID23-1 beamline report 2021

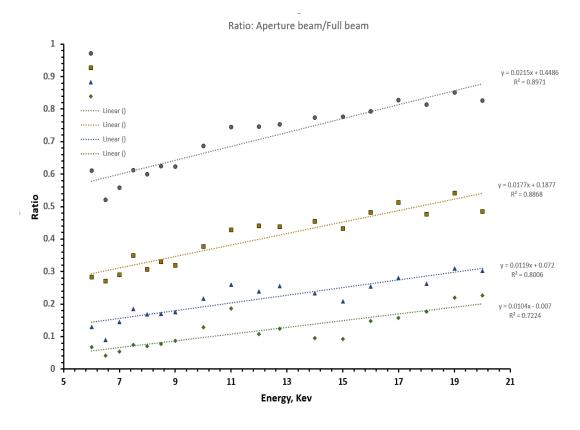
A. Popov & G. Santoni

The European Synchrotron

NEW EXPERIMENTAL SETUP

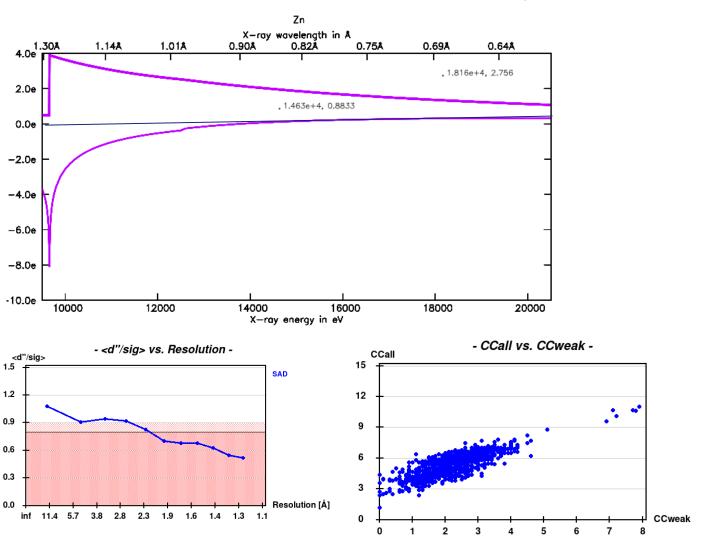
New ID23-1 sample environment is composed of a MD2-S micro-diffractometer and an EIGER2 X 16M detector with a CdTe sensor. The temperature at the sample position is controlled using new Cryostream 800 series cryocooler (temperature range 80–400K; Oxford Cryosystems, Oxford, UK).

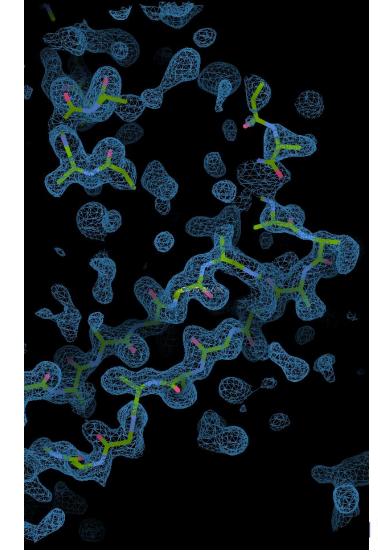

Diffractometer	MD2-S micro-
	diffractometer
	(Arinax).
Sample Changer	FlexHCD
Fast Shutter	Piezo-based
	millisecond shutter
Beam-defining	Radius 50 µm, 30 µm,
apertures	20 μm, 10 μm
Fluorescence	AXAS-A (KETEK
Detector	GmbH).
Detector	EIGER2 X CdTe 16M,
	active area 311 x 327
	mm² , 4148 x 4362
	pixels (75 microns in
	size), 120 images per
	second
Experiment Control	MXCuBE3



EXPERIMENTAL SETUP

Photon flux (photons/s) at the ID23-1 sample position for different apertures as a function of energy. The storage ring current is ~200mA.




Photon flux reduction according to aperture size as a function of X-ray energy

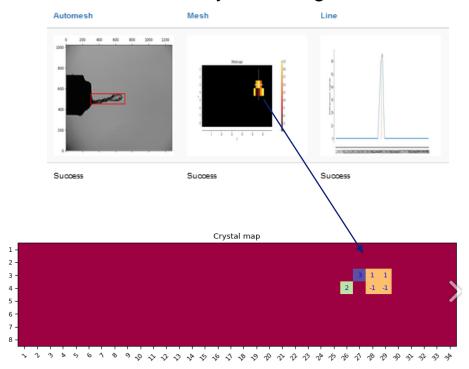
HIGHER X-RAY ENERGIES FOR MACROMOLECULAR CRYSTALLOGRAPHY

Thermolysin, 20 keV

METHOD DEVELOPMENTS: X-RAY CRYSTAL RECOGNITION

Acta Cryst. (2018). D74, 355-365

https://doi.org/10.1107/S2059798318002735



The complex analysis of X-ray mesh scans for macromolecular crystallography

I. Melnikov, O. Svensson[®], G. Bourenkov[®], G. Leonard[®] and A. Popov[®]

In macromolecular crystallography, mesh (raster) scans are carried out either as part of X-ray-basec which diffraction images can be collected. Here, the methods used in MeshBest, software which autoproduces a two-dimensional crystal map showing estimates of the dimensions, centre positions and presented. Sample regions producing diffraction images resulting from the superposition of more the

X-ray centering

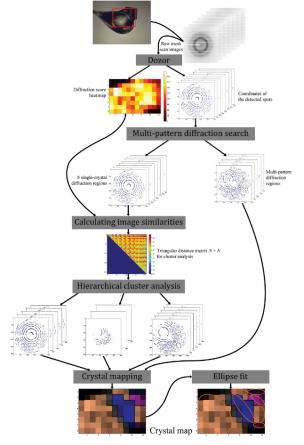
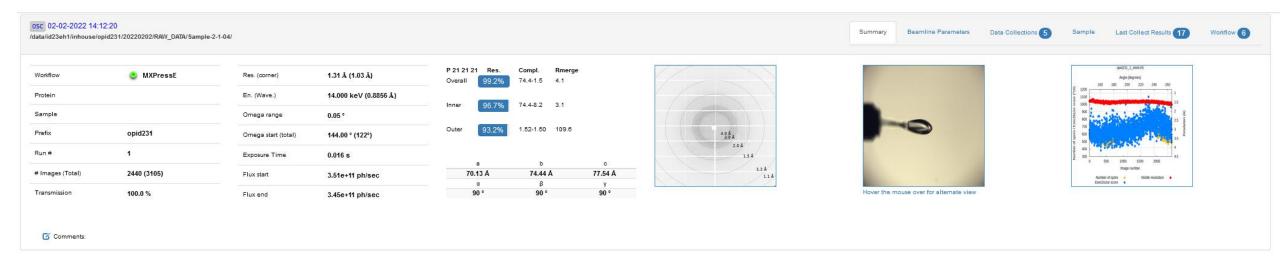
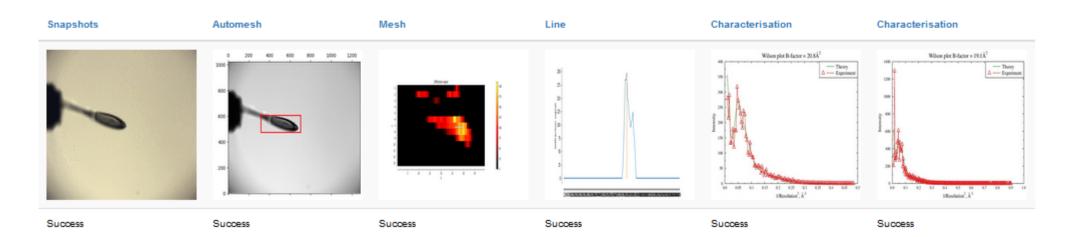
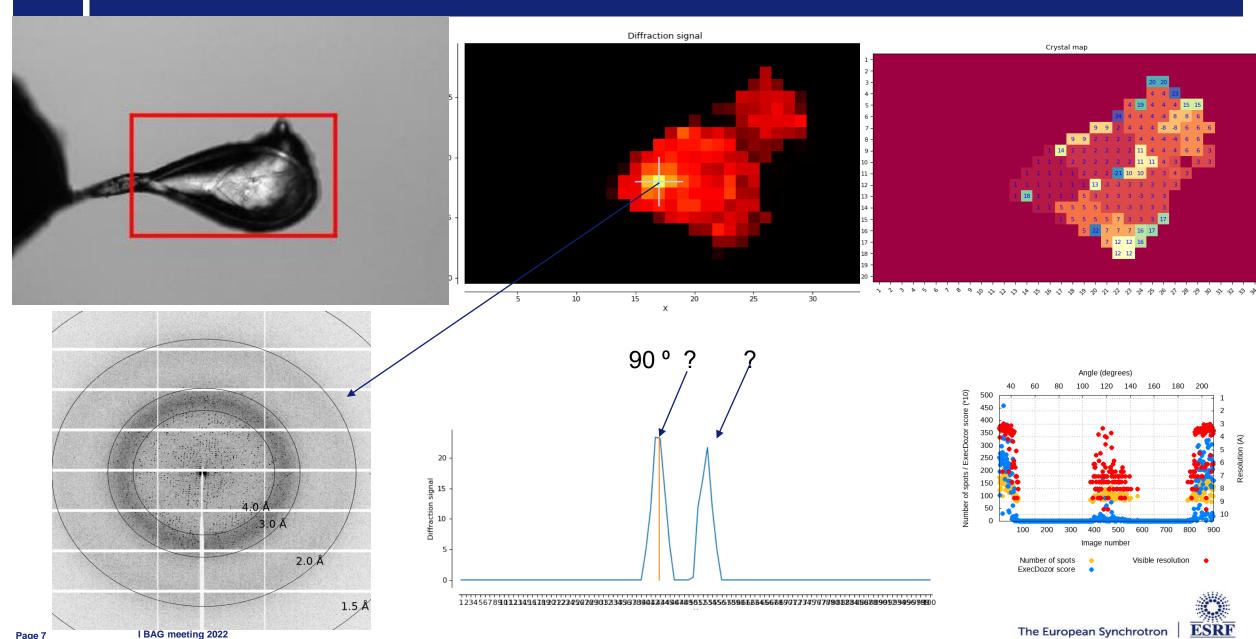



Figure 1

Overview of the workflow of the method. Each X-ray mesh scan produces N_{rows} × N_{columns} diffraction images. These are individually analysed by Dozor, which produces an estimate of the diffraction signal and determines a list of diffraction-spot coordinates and their partial intensities in each image.



ID23-1 MXPRESSE


osc 02-02-2022 14:12:20

/data/id23eh1/inhouse/opid231/20220202/RAW_DATA/Sample-2-1-04/

X-RAY CRYSTAL RECOGNITION

DOZORM2 -two or more scans analysis

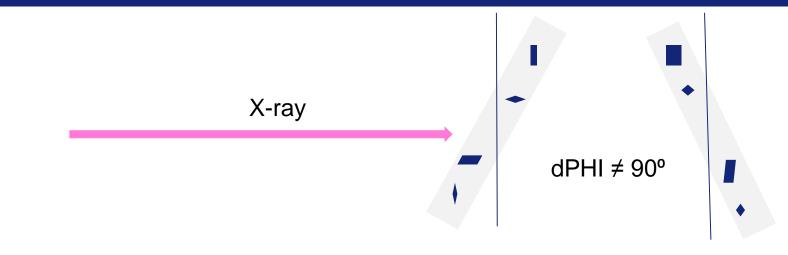
DOZORM2 –TWO OR MORE SCANS ANALYSIS

Program dozorM /A.Popov,G.Bourenkov & I.Melnikov / Version 2.1.5 // 03.02.2022 Copyright 2020 by Alexander Popov and Gleb Bourenkov

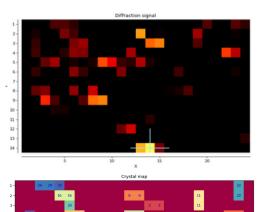
SCAN 1

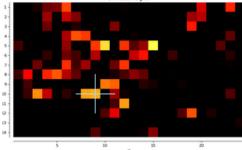
Cryst Apertur					Int/Sig	N.of		mages	CRsize		Score	Helic	Start		Finish		Int/Sig	
number	size	image												-	x	-	helical	
1	20.0	7	4.0	2.0	53.8	3	3	1	3	1	42.9	YES	2	2	4	2	78.6	
2	20.0	13	3.0	3.0	53.2	4	4	2	4	1	34.0	YES	1	3	4	3	132.6	
3	20.0	12	2.0	3.0	15.8	2	2	2	1	1	10.3	NO						

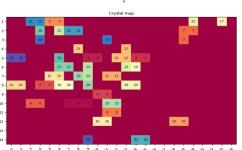
SCAN 2


	al N.of (Aperture	Central		nate				Images dY			Score	Helic	t V	Finish	v	Int/Sig helical
													 -		-	>
1	20.0	7	4.0	2.0	27.1	2	2	1	2	1	16.6	NO				
2	20.0	12	2.0	3.0	27.7	2	1	2	1	2	13.7	NO				
3	20.0	17	4.0	4.0	11.7	1	1	1	1	1	3.5	NO				
4	20.0	14	4.0	3.0	10.6	1	1	1	1	1	3.2	NO				
5	20.0	20	1.0	4.0	5.4	1	1	1	1	1	1.6	NO				
6	20.0	13	3.0	3.0	2.3	1	1	1	1	1	1.4	NO				

3D COORDINATES


Numb	Score	Crystal		Aperture	ScaneCoordinate			Cr	Size,m	icron	Real	Coordin	.micron	Alfa	sampX	sampY	phiy	
	aver.	Sc1	Sc2	size	Х	Y1	Y2	dX	dY1	dY2	X	Y	Z					
1	29.8	1	1	20.0	4.0	2.0	2.0	60.0	20.0	20.0	17.6	-17.6	-15.6	135.000	0.1326	0.1714	0.4804	
2	25.3	2	1	20.0	3.5	3.0	2.0	80.0	20.0	20.0	17.6	2.4	-5.6	82.152	0.1326	0.1914	0.4904	
3	23.2	1	3	20.0	4.0	2.0	4.0	60.0	20.0	20.0	-22.4	-17.6	-15.6	231.907	0.0926	0.1714	0.4804	
4	23.1	1	4	20.0	4.0	2.0	3.0	60.0	20.0	20.0	-2.4	-17.6	-15.6	187.848	0.1126	0.1714	0.4804	
5	17.7	2	6	20.0	3.0	3.0	3.0	80.0	20.0	20.0	3.1	2.4	4.4	591.907	0.1181	0.1914	0.5004	
6	12.0	3	2	20.0	2.0	3.0	3.0	20.0	20.0	40.0	0.3	2.4	24.4	547.848	0.1153	0.1914	0.5204	




X-RAY CRYSTAL RECOGNITION DOZORM2 —two or more scans analysis

Mesh&Collect

					COORDINA													
	Numb	Score	Crv				ScaneCoo.	rdinate	Cr	Size m	icron	Res	1Coordi	n micro	n Alfa			
	1101100						Y1											
	1	136.0	1	5	50.0	14.4	14.0	5.0	57.0	19.0	19.0	148.6	-227.6	-124.6	46.872	0.4022	-0.4162	-0.5045
	2	112.1	2	1	50.0	8.6	9.1	10.0	57.0	19.0	19.0	101.1	44.5	-15.6	326.221	0.3547	-0.1441	-0.3955
	3	100.8	4	1	50.0	9.0	5.0	10.0	57.0	19.0	19.0	41.2	148.3	-22.1	275.531	0.2948	-0.0403	-0.4020
	4	104.2	3	5	30.0	14.9	3.0	5.0	38.0	19.0	19.0	-14.0	53.9	-134.6	245.437	0.2396	-0.1347	-0.5145
	5	47.6	8	2	20.0	7.0	3.0	4.0	57.0	19.0	19.0	-19.1	24.8	14.9	222.364	0.2345	-0.1638	-0.3650
	6	56.7	7	7	20.0	3.0	9.0	10.0	38.0	19.0	19.0	100.3	45.9	90.9	325.418	0.3539	-0.1427	-0.2890
	7	60.0	6	13	20.0	12.5	2.0	5.0	38.0	19.0	19.0	-28.8	79.5	-89.6	240.100	0.2248	-0.1091	-0.4695
	8	75.3	11	7	20.0	3.5	5.0	10.0	38.0	19.0	19.0	41.2	148.3	81.4	275.531	0.2948	-0.0403	-0.2985
•	9	50.9						11.0							350.685			
	10	45.1	5	24	20.0	22.0	4.0	5.0	38.0	19.0	19.0	0.8	28.3	-270.1	261.550	0.2544	-0.1603	-0.6500
	11	51.4		10			4.0								92.645			
	12	40.0			20.0			12.0							261.443			
		36.1			20.0			5.0							340.000			
	14	24.0			20.0			7.0							308.938			
	15	29.8			20.0										252.340			
	16	29.7			20.0			12.0							296.452			
	17				20.0			7.0							2.721			
	18				20.0										268.643			
		18.6			20.0			7.0							248.476			
	20	17.5				6.0		2.0							64.589			
	21	29.0			20.0			10.0							284.529			
		16.4			20.0			7.0							2.721			
	23	13.1				22.5		5.0							237.489			
															160.000			
					20.0			2.0							62.414			
	26	15.7				4.0		1.0							160.000			
	77	9.7	77	38	20 O	→ ∩	4 0	a n	10 ∩	19 0	10 ∩	71 3	144 8	100 Q	268 369	n 2740	_n n438	_n 2700

