

# EBSL8 -The ID29 Upgrade Project



- A beamline dedicated to MX Serial Crystallography
  - Fully exploit Room Temperature data collection
  - Open new perspective for Time resolved studies
  - Adapt different sample environments
  - Minimize exposure time



LCP injector

LCP





• Time resolved Serial Crystallography will be more efficient with micro crystals



Pump&probe

- Use of caged compounds or intrinsic photo activated proteins
- $\circ$  Time resolution given by convolution of pulses (laser + X-ray) and lag
- Temperature jumps by IR
- Other probes
- Mix&Inject
  - More general
  - Mix substrates, ligands
  - pH changes
  - Diffusion is much faster on micro crystals
  - Time resolution may be limited by mixing time





Nogly, et al. 2018. Science 361 (6398).



Weinert et al. 2019. Science 365 (6448): 61-65.

## **FOCUSING OPTICS**

DMM

Horizontal

- Sample at 107 m from source
- Working distance to sample 500 mm
- Beam divergence 0.7 x 1.9 mrad (VxH)
- Smallest spot size 0.5 x 0.6 µm (VxH)
- Beam resizing by tuning incident angle

KB

HFM







### **EBSL8 BEAMLINE**

- **EH1** dedicated to Time Resolved-SSX experiments at room temperature
- 10 20 keV energy range
- Variable bandwidth (0.3 and 1 %)
- Sub-micron focusing
- Up to **10<sup>16</sup> ph/s**
- SSX sample environment (jets, microfluidic, fixed targets, etc)
- New diffractometer for fast scanning on fixed targets experiments

EXPH2

New Jungfrau detector with 1khz and 1 μs integration time



- EH2 (aka SandBox)
- Optimized for High energy experiments (35 keV)
- Ultraflexible sample environment
- An R&D endstation dedicated to the development of new methods
  - Configuration while experiments are running in EH1





## SAMPLE PREPARATION LABORATORY



# CONTROL CABIN



## **EXPERIMENTAL HUTCHES**



## **OPTICAL HUTCH 1**



- OH1 construction delayed because of lockdown, completed last December
- Radiation test successful
- Completing cabling to install optical elements



# OPTICAL ELEMENTS



| Photon Energy [keV]                                         | 10     | 15     | 20     | 25     | 35     |
|-------------------------------------------------------------|--------|--------|--------|--------|--------|
| DMM examples                                                |        |        |        |        |        |
|                                                             |        |        |        |        |        |
| [Mo/B <sub>4</sub> C] d=3.0 nm                              |        |        |        |        |        |
| Angle [Mo(1.4)/B <sub>4</sub> C(1.6)] [mrad]                | 21.1   | 14.0   | 10.5   | 8.4    |        |
| FWHM beam footprint [Mo(1.4)/B <sub>4</sub> C(1.6)]<br>[mm] | 35.0   | 46     | 57     | 68     |        |
| R <sup>2</sup> [Mo(1.4)/B <sub>4</sub> C(1.6)]x200          | 0.643  | 0.797  | 0.711  | 0.553  |        |
| dE/E FWHM peak [Mo(1.4)/B4C(1.6)]x200                       | 0.010  | 0.011  | 0.009  | 0.009  |        |
|                                                             |        |        |        |        |        |
| [Ti/B <sub>4</sub> C] d=2.8 nm                              |        |        |        |        |        |
| Angle [Ti(1.4)/B <sub>4</sub> C(1.6)] [mrad]                | 22.4   | 15.0   | 11.2   | 9.0    |        |
| FWHM beam footprint [Mo(1.4)/B <sub>4</sub> C(1.6)]<br>[mm] | 33     | 43     | 54     | 63     |        |
| R <sup>2</sup> [Mo(1.4)/B <sub>4</sub> C(1.6)]x400          | 0.427  | 0.650  | 0.760  | 0.823  |        |
| dE/E FWHM peak [Mo(1.4)/B <sub>4</sub> C(1.6)]x400          | 0.0037 | 0.0042 | 0.0045 | 0.0046 |        |
|                                                             |        |        |        |        |        |
| [W/B <sub>4</sub> C] d=2.2 nm                               |        |        |        |        |        |
| Angle [W(1.1)/B <sub>4</sub> C(1.1)] [mrad]                 |        |        |        |        | 8.2    |
| FWHM beam footprint [W(1.1)/B <sub>4</sub> C(1.1)] [mm]     |        |        |        |        | 64.8   |
| R <sup>2</sup> [W(1.1)/B <sub>4</sub> C(1.1)]x200           |        |        |        |        | 0.746  |
| dE/E FWHM peak [W(1.1)/B <sub>4</sub> C(1.1)]x200           |        |        |        |        | 0.0119 |







|                    |          | CDR1       | CDR2       | CDR1_Z-    | CDR2_Z-    |          |
|--------------------|----------|------------|------------|------------|------------|----------|
| Mvt Rz = ± 50 mrad | Error X  | ± 3.8 μm   | ± 6.5 μm   | ± 3.3 μm   | 1          | ± 100 μm |
|                    | Error Y  | ± 20 μm    | ± 3.8 μm   | ± 21.5 μm  | 1          | ± 20 μm  |
|                    | Error Z  | ± 3.3 μm   | ± 7.5 μm   | ± 1.8 µm   | 1          | ± 20 μm  |
|                    | Error Rx | ± 1.5 µrad | ± 2 µrad   | ± 1.2 µrad | ± 1.8 µrad | ± 2 μm   |
|                    | Error Ry | ± 2 µrad   | ± 2.7 µrad | ± 2.9 µrad | ± 2.6 µrad | ± 2 μm   |
|                    | Error Rz | NA         | NA         | NA         | NA         | 1        |

## **OPTICAL HUTCH 2**





- OH2 reuses old EH1
- Main components are two choppers
  - Power chopper
  - Fast chopper
  - On going development from Celeroton AG
  - Variable exposure time
  - Synchronous opening with machine clock

|       | 0.7 mm    |             |             | 0.4 mm      |             |             |  |
|-------|-----------|-------------|-------------|-------------|-------------|-------------|--|
| slots | @ 17 mm   | @ 18.5 mm   | @ 20 mm     | @ 17 mm     | @ 18.5 mm   | @ 20 mm     |  |
| 1 mm  | 1.9/11.4  | 1.8 / 10.5  | 1.6 / 9.7   | 3.8/9.4     | 3.5/8.7     | 3.3 / 8.0   |  |
| 3 mm  | 14.7/24.9 | 13.5 / 22.9 | 12.6 / 21.2 | 16.6 / 23.0 | 15.3 / 21.1 | 14.2 / 19.5 |  |
| 5 mm  |           |             | 23.5 / 32.8 |             |             | 25.2 / 31.0 |  |

## **MD3UPSSX**











MD SX



Trigger 1Trigger 2Delays configurables in steps of 20ns

The European Synchrotron | ESRF















#### ESRF Structural Biology Group

Jean Susini Gordon Leonard Hugo Caserotto Fabien Dobias David Flot Jonathan Gigmes Thierry Giraud Antoine Royant John Surr

#### ESRF Mechanical Engineering Group

Pascal Theveneau Anne-Lise Buisson Daphne Lorphevre Carlos Muñoz Pequeño

> ESRF Optics Group Ray Barrett Amparo Vivo Christian Morawe

#### ESRF Detector & Electronics Group

Pablo Fajardo Paolo Busca Nicolas Janvier Herve Gonzalez Marie Ruat

#### ESRF Building Infrastructure Group Thomas Gerfaud Alvaro Ruiz

#### **ESRF** Software Group

Antonia Beteva Samuel Debionne Andy Gotz Alejandro Homs Jerome Kieffer Marcus Oscarsson Olof Svensson

#### EMBL Synchrotron + Instrumentation Team

Shibom Basu Victor Armijo Florent Cipriani Franck Felizas Marcos Lopez Gergely Papp Jeremy Sinoir



Follow the progress

@DdS\_ID29



