

SB and the ESRF-EBS Project MX BAG Meeting February 2017

Gordon Leonard

ESRF UPGRADE PROGRAMME PHASE I: A NEW GENERATION OF BEAMLINES

Purple Book January 2008

ESRF UPGRADE PHASE I 180 M€ (2009-2015): ESFRI ROADMAP 2006-2016 IN TIME – WITHIN BUDGET

- 19 new beamlines, many specialised on nano-beam science
- Upgrade and renewal of facilities and support laboratories

STRUCTURAL BIOLOGY AT ESRF: 2016

CURRENT STATUS ESRF, SB GROUP BEAMLINES

BL	Comments		
MASSIF-1	High throughput hands-off data (fragment/ligand screening) and initial stages of projects.		
MASSIF-3	High throughput data collection from smaller/µcrystals. Multi- crystal, multi-position data collection. Fixed wavelength SSX.		
ID30B	'Standard' MAD/SAD data collection. In situ data collection/phasing. Multi-crystal, multi-position data collection.		
BM29	High throughput BioSAXS.		
ID23-1	Standard' MAD/SAD data collection. In situ data collection/phasing. Multi-crystal, multi-position data collection.		
ID23-2	Nano-/μfocus end-station. 'Standard' data collection from μcrystals. Fixed wavelength SSX. Multi-crystal, multi-position data collection.		
ID29	Standard' MAD/SAD data collection. In situ data collection/phasing. Multi-crystal, multi-position data collection. On-line spectroscopy (raman)		
ID29-S	Cryobench: in crystallo spectroscopy		

ESRF Extremely Brilliant Source ESRF-EBS - 150 M€ (2015-2022)

- FIRST of a new generation of synchrotron storage rings
- ~100 times more brilliant and coherent X-rays
- Programme to exploit the qualities of this new and so far unique extremely brilliant X-ray source:
 - Creation of new beamlines
 - Innovative detector programme
 - « Data as a Service » strategy

- · Smaller source size
- Lower divergence
- Smaller X-ray beams
- Much brighter beams
- All straight sections equal
- Higher coherence fraction

ESRF-EBS; HIGHER BRILLIANCE & COHERENCE

http://www.esrf.fr/files/live/sites/www/files/about/upgrade/documentation/whitepaper-upgrade-phasell.pdf

DOING 'STANDARD' THINGS (AUTOMATICALLY) FASTER & BETTER

2. Large crystals

- Where is 'sweet spot'?
- Smaller beam = finer sampling

Bowler et al. & Leonard , Diffraction cartography. Acta Cryst. (2010). D66, 855-864

- Where is my sample
- Is it my sample?
- Where is the best part of my sample
- For small crystals X-ray centring in the beam (full rotation)
- How to avoid (too much) radiation damage?
- How to best collect diffraction data?

EBS: PRODUCTION OF VERY SMALL, VERY HIGHLY INTENSE X-RAY BEAMS

	Emittance		Beta [m]		λ[Å]	Rms size [μm]		Divergence [µrad]			
	H [nm]	V [pm]	Н	V		Н	V	н	V		
т	4		37.2	3	6.2	409	10.8	14.5	10.3		
igh be		5			1	409	5.6	11.9	6.1		
ta					0.2	409	4.7	11.3	4.7		
Low beta	4	5	0.37	3	6.2	50	10.8	104	10.3		
					1	49	5.6	104	6.1		
										0.2	49
Ne	0.1 3	2	4.7	2.7	6.2	26.7	10.3	11.4	10.2		
w lattice					1	25	4.7	7.4	5.3		
					0.2	25	3.5	6.8	4.4		

ID23-2 in 2017 and beyond

Solution	Beam size (µm², H x V)	Flux (ph/s)	Beam size (µm², H x V)	Flux (ph/s)
CRL (V)	3.8 x 5.6	4 x 10 ¹²	3.9 x 1.3	2.1 x 10 ¹²
CRL (H)				
CRL (V)	6.8 x 5.1	1.7 x 10 ¹³	1.0 x 1.2	1.2 x 10 ¹³
Mirror (H)				
KB mirrors	5.5 x 3.8	9 x 10 ¹²	2.0 x 1.6	8.4 x 10 ¹²
Solution	Beam size (µm², H x V)	Flux (ph/s)	Beam size (µm², H x V)	Flux (ph/s)
CRL (V)	3.7 x 5.6	4.8 x 10 ¹²	4.1 x 1.5	2.5 x 10 ¹³
CRL (H)				
CRL (V)	5.4 x 5.3	5.6 x 10 ¹³	0.75 x 1.3	4.9 x 10 ¹³
Mirror (H)				
KB mirrors	4.2 - 2.7	4 - 1013	16-16	4.1 - 1013

Page 8 |G Leonard | BAG Meeting | February 2016|

ESRF ID29			
	Current	New lattice	New Lattice (50:1)
Source size (FWHM; $H \times V$; μm^2)	49 × 5.6	59 x 11	59 x 11
Divergence (r.m.s. $H \times V$; μm^2)	104 × 6.1	7.4 x 5.3	7.4 x 5.3
Demagnification ratio	3:1	3:1	50:1
Beamsize @ sample (µm ²)	~60 x 30	20 x 4	1.2 x 0.2
Flux @ sample (ph/sec)	~1 x 10 ¹³	~1 x 10 ¹⁴	~1 x 10 ¹⁴
Flux density @ sample (ph/sec/µm²)	1.7 x 10 ⁹	2.1 x 10 ¹²	2.4 x 10 ¹⁴
Absorbed dose rate (Gy/sec)	7.8 x 10 ⁵	9.6 x 10 ⁸	1.2 x 10 ¹¹
Time to Henderson Limit (sec) 26		0.021	0.0002

• Smaller beams (micro, nano);

• Increase in flux density

- 2.5 orders of magnitude
- 5 orders of magnitude

The European Synchrotron ESRF

WHAT DO OUR USERS WANT? EBS EXPRESSIONS OF INTEREST SB GROUP

no	proposer	Title	Techniques	Comments
1	Jegorov	Pharma industry	SMX; determination of absolute configuration. Crystal size ~ 1 μm in smallest dimension.	Needs combination of characteristics hard to achieve on MX BL
15	Caliandro	Heavy atoms speciation in protein crystals	MX, XAS	Should be relatively straightforward to implement on MX tuneable BL. Does not depend on EBS.
40	M. Czjzek	EBS for macromolecular structural biology of original proteins and complexes	MX, MDX in situ screening (i.e. crystallisation plates, or microfluidic devices) at cryo-conditions but also at ambient temperature	Smaller and/or higher flux density beams on post-EBS MX BLs should make this straightforward to implement (i.e. MASSIF-3, ID23-2, ID30B).
41	Sulzenbacher	Extremely brilliant source for the investigation of challenging biological systems	SSX (nano-size crystals) combined with spectroscopic experiments	Requires nano-/µbeam). Will address dynamics in biological systems, not amenable for the moment.
42	Marquez	Macromolecular crystallography and structure guided drug design	MX, MDX, SSX Accelerate analysis of small molecule-protein interactions by x-ray crystallography for drug design programs.	Post-EBS MASSIF-1, MASSIF-3, ID30B will be ideally suited for this purpose
43	Cusack	Serial synchrotron crystallography for structural biology	SSX	1 – 10 μm beamsize on both a tuneable and a fixed wavelength BL.

- Relatively few Expressions of Interest suggests that most ESRF MX users want more of the same, but better.
- Clear ideas for ambient temperature/SSX.
- So, what should we do?

CDR8 – A SERIAL CRYSTALLOGRAPHY BEAMLINE

- A SSX beamline with large bandwidth (~1%), very high flux 10¹⁶ph/s
- Focus beam to $0.5 10 \,\mu\text{m}$
- Tuneable from 10-30 keV

BL	Comments
MASSIF-1	Fixed wavelength. Very high throughput hands-off data collection (fragment/ligand screening ; initial stages of projects). In situ screening/data collection. Hands-off dehydration experiments.
MASSIF-3	High throughput data collection from smaller/µcrystals. Multi-crystal, multi-position data collection. Fixed wavelength SSX. msec/µsec time resolution (with ID29S).
ID30B	Variable focus [20 – 200 μ m ²]. High throughput data collection [smaller crystals]. 'Standard' MAD/SAD data collection. Multi-crystal, multi-position, multi-temperature data collection. In situ data collection/phasing. Extend to lower energies?
BM29	Higher throughput [remote access?], improved pipelines, microfluidic chips. TR- BioSAXS?
ID23-1	'Standard' MAD/SAD data collection. In situ data collection/phasing. Multi-crystal, multi-position multi-temperature data collection. Variable focus [5 – 300 μ m ²]? Extended energy range [higher energies]? Low resolution data collection?
ID23-2	Nano-/µfocus end-station. 'Standard' data collection from µcrystals. Fixed wavelength SSX. Multi-crystal, multi-position data collection.
ID29	Tunable (TR-SSX)
ID29-S	Cryobench: in crystallo spectroscopy. Support for TR-SSX experiments.
Cryo Electron Microscopy	

THE EBS-SHUTDOWN BE?

EBS-Shutdown: December 2018 – September 2020 (not definitive)

Thanks for your attention

