News from ID30B

Andrew McCarthy (EMBL)

Christoph Mueller-Dieckmann (ESRF)

ID30B – Optical layout

ID30B – Experimental hutch

ID30B – Variable focusing capabilities Energy range: 6-20 keV Flux ~ 5x10¹² phs/sec/mm² at 12.7 keV Beam size: <40μm² (apertures – 10, 20, 30, 50 and 75 μm²)

Vertical focusing, no horizontal focusing (mirror unbent)

	No vertical fo	ocusing – mirror	bent	
		F	ocused beam	
100 μm 200 μm				
	100 µm			
	<u>200 μm</u>			
		100) μm 200 μm	

FlexHCD – A versatile sample changer

SPINE baskets (x12) = 120 samples

Unipucks (x11) = 176 samples

New sample holder types (36 samples)

8 PDB depositions (6 publications)

Workflows implemented in MxCuBE

mxcube (opid-30b)	• - • ×
File Instrumentation Help	L Expert mode
Collect ①System SFeedback ②Chat	Machine current
User Sample centring	160.6 mA Z/8 milliburch
User: opid-30b Group: Set Gauge Sample position	thod [] U : D
Sample list Omega: 310.00 🖉 🕜 🧬 90.0 🗹 Kappa: 0.00 🖨 🖓 🖗 🖉 1.0 🗹 Phi: 0.00 🖨 🖓 🧬 0.1 🗹 Standard Collect	tion Flux: 1.94e+12 ph/s
Mode: Sample changer 🝸 Show SC-details Holder length: 23.067 🔷 💽 🗗 0.1 🍸 Characterisation	1 Energy
Centring: Semi Automatic 1 SPyB Sample video Helical Collection	in Current 12.7000 keV
Back Light: 0.50 🖨 🆓 🕜 Focus: -0.200 🖨 🗗 0.01 🝸 Front Light: 0.0 🖨 Zoom: 5 🖃 Energy Scan	0.976 Å
ter □ 1:1	Move to:
	entring
	Current: 267.84 mm
	Move to:
	Re-orientation
	Current: 100.00%
P⊔ Puck2 Visual I	Re-orientation
	abarratariantian
Puck 5	Characterisation
Mesh a	nd collect
Enhand	ed characterisation
Burn st	rategy 4
	-Fast shutter
🖽 100 µm Dehydr	ation closed
Passerelle EDM · Mozilla Firefox (on ub1404) + D X	
€ @ mxedna:8080/BES/bridge/app/	s shooting unknown
Beamline Expert System	
	Capillary
	out
Expert Flows	
>Flow History ✓ MXPressE >Flow Feedback	Current users
Repository Proferences	
>Project	Allow timeout control
Translations	G G
Col Shared Submodels	Add to queue
I2015-11 Prepare HOPereze	
2015-11 Skulle files	
Images Images	
T lest Alert Set 15₽/0 to success with error messages	
Analysis Requests	
> Tasks > Results	
>Events	ESRE

Fast mesh scans implemented in MxCuBE

	mxcube (opid-30b)	4 - E ×
File Instrumentation Help		L Expert mode
Collect DSystem Feedback Chat		Machine current
User	Sample centring Workflow	7/8 multibunch
User: opid-30b Group: Set Group:		
Sample list		Flux: +0.00 ph/s
Mode: Manually mounted X Show SC-details		Energy
Centring: Semi Automatic 7		Current: 13.5651 keV
Tree Manually-mounted		Move to: keV =
X-ray Centring - 1 L Workflow task - 0		Resolution
		Current: 2.999 A
		Move to: A =
		-Transmission
		Current: 100.00%
		Beamstop distance
		99.99 K
		Safety shutter
		closed
		-Fast shutter
		closed
		Beamstop
		out
		out
	Different merce-molecules)	Current users
	Use fast mesh (beta) true =	
		Selecting gives control
Û J 💼	Transmission 100.0	Allow timeout control
Stop	Continue	Take control
Pause		My name: bacon
[2017-02-05 08:43:39] Workflow: phiz: 0.258 [2017-02-05 08:43:39] Workflow: phiy: -1.164		
[2017-02-05 08:43:40] Workflow waiting for input, verify parameters and press co		N.

Fast mesh scans implemented in MxCuBE

Fast mesh scans implemented in MxCuBE

ID30B – MD2S allows plate screening capability

ID30B – SBS plate format supported

Crystal Direct[™]

CrystalQuick[™] X

In Situ-1™

Other SBS plate formats can be accommodated but need templates from users

In situ plate data collection in MxCuBE

	mxcube (mx-1743)		
File Instrumentation Help			L Expert mode
Collect ①System Feedback Chat			Machine current
User	Samole centring		185.4 mA
User: mx-1743 Group: Set 🕰 Logout	Sample position	Collection method	81:51
Sample list	Omega: 316.36 🚔 🜑 🗗 90.0 🗹 Kappa: 0.00 🚔 🜑 🗗 1.0 🗹 Phi: 0.00 🚔 🜑 🗗 0.1 🗹	Standard Collection	Flux: +0.00 ph/s
Mode: Plate I Show SC-details	Holder length: 32.500 🖨 🕜 🗗 0.1 🗸		Energy
Centring: No Centring	Sample video	Oscillation range: 0.1 First image: 1	12.7000 keV
	Back Light: 0.60 🚔 🦓 🅎 Focus: -0.729 🚔 🗗 0.02 🍼 Front Light: 0.0 📥 Zoom: 5 💷	Oscillation start: 316.36 Number of images: 10	0.976 Å
		Kappa: 0.0 Phi: 0.0	Move to: keV 💷 🔘
- A:1:2	Centre		Resolution
→ A:1:3 → A:2:1		Detector mode:	Current: 201 53 mm
- A2:2	Save	Exposure time (s): 0.037	Move to:
□ □ A23 □ □ □ A3:1		Energy (keV): 12.7 MAD <u>ip:</u>	
- A32	Snapshot	Resolution (Å): 1.997	Current: 100.00%
A3.3 - A4:1		Transmission (%): 100.0	Set to: Filters
		Inverse beam Subwedge size:	
D- A:5:1		Shutterless	
Standard - 7 L		Data location	
Standard - 8 Way 14 (Paint pat defined) Collection date			
P-□ Standard - 9		Folder:	
xyla_15 (Point - not defined) Collection done Standard - 10		/data/visitor/mx1743/id30b/20151104/RAW_DATA	
L xyla_16 (Point - not defined) Collection done		/XIyA/A3-2	
Standard - 11 L		File name: xyla_23_####.cbf Browse	Safety shutter
⊕- □ Standard - 12 □ wile 10 (Peint, cet defined) Collection date	🔳 🔢 🔢 💷 💷 💷 💷 💷	Prefix xyla	closed
	Centre beam	Run number 23	
		Processing	-Fast shutter
L xyla_21 (Point - not defined) Collection done	Point no. 2 selected	N.o. residues: 200 Space group:	4 F
⊡- U Standard - 15 └── xyla_22 (Point - not defined) Collection done	Aperture diameter: 50 _	Unit cell:	Beamstop
- 🗆 A.5.2		a: 0 b: 0 c: 0	in
- A:5:3 - A:6:1		α: 0 β: 0 γ: 0	(F
			Capillary
- A:7:1			unknown
		Characterisation	
		Helical Collection	Current users
		Energy Scan	
		XRF Spectrum	Selecting gives control
<u> </u>		Advanced	Allow timeout control
Collect Queue		Add to queue	Ask for control
Fause			My name: bacon
[2015-11-04 11:49:00] Asking for input files writing			

LIND

ESRF

[2015-11-04 11:49:00] Preparing acquisition, start=314.730000, wedge size=10 [2015-11-04 11:49:00] Collection completed

MX-1743 (EMBL)

- CrystalDirect plates from the HTX lab
 - Test of diffraction quality at RT
 - Highest resolution is 2.5 Å (cryo)
 - Best we saw was ~3 Å (maybe 2.8 Å)

Protein Contraction	Res. (comer)	
Sample	Wavelength	0.97
Prefix ref-B6_6	Phi range	The second se
Images 1	Phi start (total)	
Transmission 100	Exposure Time	
Flux start 4.15e+11 ph/sec	Flux end	
Run #1 Characterization May 21, 2016 11.3 /dsta/visitor/mu1743/id30b/20180521/RAW_DATA/B		Beantine Parameters Bangle Diffraction Plan
Workflow	Туре	
Protein	Res. (corner)	2.51
Sample	Wavelength	9.97
Prefix ref-B6_5	Phi range	
Images 1	Phi start (total)	404
Transmission 100	Exposure Time	
Flux start 3.86e+11 ph/sec	Flux end	#1 /data/visitor/mx1743/id30b/20160521/RAW_DATA/Berger/collectB6

Thaumatin crystals (12.7 keV)

xtended ISPyB	× +	100													
) exi.esrf.fr/mx	<pre> /#/mx/datacollection/s</pre>	session/54151/main									C Q Search			☆ 🛍	i 🦊 🏠
Visited 🕕 Libr	rary:Main - Intranet 🛞	Exit, removing your da													
	ExiMX Extend	led ISPyB for MX _{BETA}												Version: 0.9.6 Released: 2016/	11/15
ome Ship	oment 🗸 Prote	ins and Crystals $ \smallsetminus $	Prepare Experiment	Data Exp	olorer 🗸	Offline	Data Ana	lysis \sim	Help 🖂		search by protein acror	ym.	E	Log out OPIE)30b@andr
New Tab															
Run #4 OSC Se data/id30b/inhous	p 9, 2016 5:16:44 PM ee/opid30b/20160909/RAV	/_DATA/Thaumatin/D7_1								Summary	Beamline Parameters	Data Collections	Sample	Results 8	Workflow
Workflow		Туре	OSC	P 42 21 2	Completeness	Res.	Rmerge							collect_4_mmm.cbf Angle (Segreel)	
Protein		Res. (corner)	1.5 Å (1.18 Å)		9170		0.1						290 295 200	205 210 215 120 125 110 22	340
Sample		Wavelength	0.977 Å	Outer	100%	1.5	0.7		~				200	and the second	1.5 2
Prefix	collect	Phi range	0.1 °	Overall	98%	1.5	0.1		U	124			100 150 10 500		3 SS
Images	500	Phi start (total)	340° (50°)								0		Parme 60 0	in the second	4
Transmission	9.82789	Exposure Time	0.02 s	cell A 58.5689	cell B 58.5689	cell 151	C 592				110 m		50 100	150 200 250 300 350 400 450 Image number	500
Flux start	3.5e+10 ph/sec	Flux end	3.39e+10 ph/sec	Alpha 90	Beta 90	Gan 90	nma						Decor	con Con	
Run #3 OSC Sej data/id30b/inhous	p 9, 2016 5:12:05 PM e/opid30b/20160909/RAW	/_DATA/Thaumatin/D7_1								Summary	Beamline Parameters	Data Collections	Sample	Results 15	Workflow
Workflow		Turc	010	P4212 C	ompleteness	Res.	Rmerge				• 200			collect_7_mmm.cbf	
Protein		- Type		Inner	93%	4.2	0.1				7		290 295 300	Angle (Segmen) 205 208 205 209 225 330 33	340
Sample		Res. (corner)	1.5 A (1.18 A)	Outer	99%	1.6	0.8		-			N. S. S.	8 180 560 5 180	1. Sec. 25	15
Prefix	collect	Phi range	0.01 0	Overall	99%	1.6	0.1		()		5	1	0 120	and the second se	25 000
Images	500	Dhi stat (tot-1)	2409 (509)						-		10.		Number 13 b 25	-	35
Transmission	9.82789	Execute Time	0.02 s	cell A 58.5727	cell B 58.5727	cell 151	C 579						50 100	50 200 250 300 250 400 450 Image number	500
Elun atant	2.54 - 10 - b/s			Alpha	Beta	Gan	nma		STITL MICH		100	14 TH	Number of Docor	pots Visible resolution	•
FIUX Start	3.510+10 ph/sec	Flux end	3.52e+10 ph/sec	90	90	90									

Thaumatin crystals

Data collection statistics

Wavelength (Å)	0.9763	0.7085
Phs/sec (Single bunch 4x10 mA and 20 μm aperture)	3.5 x 10 ¹⁰	9.3 x 10 ¹⁰
Exposure time (s)	0.02	0.02
Oscillation range (degrees)	50	50
Total dose (MGy) – <i>flux2dose (Sasha)</i>	0.42	0.53
Space group	P4 ₁ 2 ₁ 2	P4 ₁ 2 ₁ 2
Cell Dimensions a, b, c (Å)	58.6, 58.6, 151.6, 90, 90, 90	58.6, 58.6, 151.5, 90, 90, 90
Resolution (Å) (final shell)	50-1.5 (1.53-1.5)	50-1.5 (1.53-1.5)
Observed Reflections	149,639 (7,107)	153,095 (7,675)
Unique Reflections	42,124 (2,031)	40,896 (2,027)
Completeness (%) (final shell)	98.2 (98.4)	95.1 (98.2)
R _{meas} (%) (final shell)	14.2 (137)	12.6 (111)
<l σ(l)=""> (final shell)</l>	5.7 (1.0)	7.1 (1.3)
Model quality indicators		
R _{cryst} (%) / R _{free} (%)	16.5/18.6	16.8/18.8
rms deviations, bonds (Å)/angles (°)	0.008/0.97	0.008/0.97

Thaumatin (12.7 keV) – tartaric acid

Fo-Fc omit map contoured at 5 σ

Thaumatin crystals – S-SAD

Extended ISPyB	× +											
i) exi. esrf.fr /m	x/#/mx/datacollection/sessio	on/54178/main								C Q Search		☆自
st Visited 🕕 Lib	orary:Main - Intranet 🛞 Exit,	removing your da										
	ExiMX Extended I	ISPyB for MX _{BETA}										Version: 0.9.6 Released: 2016/11/15
Home Shi	ipment 🗸 Proteins i	and Crystals \smallsetminus	Prepare Experiment	Data Ex	(plorer 🗸	Offline	Data Analysis	∕ Help ∨		search by protein acro	onym	Log out OPID30
New Tab	× .											
Run #3 OSC Se /data/id30b/inhou	ep 12, 2016 10:12:13 AM sse/opid30b/20160912/RAW_DAT	[A/Thaumatin7keV/D6_2x	2						Summary	Beamline Parameters	Data Collections	Sample Results 14 W
Workflow		Туре	OSC	P 41 21 2	Completeness 79%	Res.	Rmerge 6.9					Thaumain_Tev(_3,mees.ct/ Angle(dogrees) 200 205 300 305 105 105 105 306 340
Protein		Res. (corner)	2 Å (1.71 Å)	Outer	5	17	42.5					300 § 250
Sample		Wavelength	1.772 A	Conter U	9	1.1	42.0			-	The second second	2 2 150
Prefix	Thaumatin_7keV	Phi range	0.1 °	Overall	77%	1.7	7.2			Caller Cont		3 200 3 25
Images	500	Phi start (total)	340° (50°)							and the second second	M. S.	
Transmission	31.211	Exposure Time	0.02 s	58.5	58.5	cell 0 151.6				$\left(\right)$ is	10.30	Image number Number of spors • Vable resolution •
Flux start	1.09e+11 ph/sec	Flux end	1.1e+11 ph/sec	90	Beta 90	Gami 90	na			Printed and Printe		Dicor score •
Run #2 OSC Se /data/id30b/inhou:	ep 12, 2016 10:11:09 AM Ise/opid30b/20160912/RAW_DAT	[A/Thaumatin7keV/D8_2x	2						Summary	Beamline Parameters	Data Collections	Sample Results 12 W
Workflow		Туре	osc	P 41 21 2	Completeness	Res.	Rmerge 5.7					Theumain_Treiv_2_mean(d) Angle (Segree)
Protein		Res. (corner)	2 Å (1.71 Å)									200 20 20 20 20 20 20 20 20 20 20 20 20
Sample		Wavelength	1.772 Å	Outer	52%	1.8	28.4			1		2 250 2 2 200 2
Prefix	Thaumatin_7keV	Phi range	0.1 °	Overall	86%	1.8	8.4					99 190
Images	500	Phi start (total)	340° (50°)							and the second	a Marin	
Transmission	31.211	Exposure Time	0.02 s	cell A 58.5	cell B 58.5 Rota	cell 0 151.6						Number of spots Visible resolution
Flux start	1.12e+11 ph/sec	Elux and	1 120+11 pb/coc	90	90	90	nd	and a set of the set o	in the second			Inclu Sche

Thaumatin crystals – S-SAD

XSCALE merge of 4 data sets

Resolution (Å)	Completeness (%)	I/SigI	R-meas (%)	CC(1/2)	Anomal Corr	SigAno	Nano
15	97.50	25.71	9.90	98.7*	32	1.454	16
8	100.00	25.82	9.40	99.2*	37*	1.581	158
6	99.50	23.24	9.50	99.3*	45*	1.633	285
4	100.00	25.18	7.90	99.3*	32*	1.177	1271
3.5	99.80	23.38	7.20	99.4*	19*	0.974	919
3	100.00	21.58	7.20	99.6*	21*	0.965	1675
2.5	100.00	16.58	8.90	99.4*	15*	0.899	3341
2.2	100.00	12.52	12.00	99.1*	11*	0.896	3754
2	100.00	8.91	17.10	98.3*	5	0.875	3939
1.9	87.60	5.85	24.10	95.5*	6	0.908	2111
total	98.20	14.46	8.90	99.6*	14*	0.943	17469

Thaumatin crystals – S-SAD

Data collection statistics (merge 4 partial datasets)

Wavelength (Å)	1.7712
Phs/sec (Single bunch 4x10 mA and 20 μm aperture)	1.1 x 10 ¹¹
Exposure time (s)	0.02
Oscillation range (degrees)	50
Total dose (MGy) – <i>flux2dose (Sasha)</i>	0.42
Space group	P4 ₁ 2 ₁ 2
Cell Dimensions a, b, c (Å)	58.6, 58.6, 151.6, 90, 90, 90
Resolution (Å) (final shell)	50-1.9 (1.95-1.9)
Observed Reflections	220,045 (8,883)
Unique Reflections	21,397 (1,349)
Anomalous Completeness (%) (final shell)	99.2 (88.5)
R _{meas} (%) (final shell)	9.3 (27.9)
<l σ(l)=""> (final shell)</l>	18.1 (6.3)
Model quality indicators	
R _{cryst} (%) / R _{free} (%)	16.5/18.6
rms deviations, bonds (Å)/angles (°)	0.008/0.97

Thaumatin (7 keV) – Anomalous map

S anomalous difference peaks using experimental anomalous differences and model phases contoured at 5σ

Lysozyme-Benzamidine crystals

Save Comments	VIEW All Summa	ary mio s	Wew All Datacollection				Expand Air	Collapse All Clea
Ехр. Туре	Image Prefix	Run#	Parameters	Results	Image Thumbnail	Crystal snapshot	Graph	Comments
Start time: 15:22:56 11-07-2016 (1]	(tem)							
osc	l <u>ysozyme benz</u>	2	Nb images: 250 Exp. time: 0.037 s Phi range: 0.10 ° Flux: 2.17E10 ph/sec Detector resolution: 1.50 Å Transmission: 1.00 Wavelength: 0.912 Å Total expo time: 9.25 s	EDNA_proc grenades_fastproc grenades_parallelproc Space Group: P 4 2 2 Completeness:			11 9 7 5 3 1 319 221 185 157 148 USIgI's Resolution	
Start time: 15:21:34 11-07-2016 (1]	(tem)							
osc	l <u>ysozyme benz</u>	1	Nb images: 250 Exp. time: 0.037 s Phi range: 0.10 ° Flux: 2.17E10 ph/sec Detector resolution: 1.50 Å Transmission: 1.00 Wavelength: 0.912 Å Total expo time: 9.25 s	EDNA_proc Service grenades_fastproc Service for the service of the			12 10 2 2 204 211 178 159 141 WSigi vs Resolution	
□ Start time: 15:19:24 11-07-2016 (11	(tem)							
osc	l <u>ysozyme benz</u>	5	Nb images: 250 Exp. time: 0.037 s Phi range: 0.10 ° Flux: 2.17E10 ph/sec Detector resolution: 1.50 Å Transmission: 1.00 Wavelength: 0.912 Å Total expo time: 9.25 s	EDNA_proc Service fastproc Service Fastproc Service Fastproc Service Fastproc Service Fastproc Fastpro			6 3 4 3 4 5 2 3 4 5 2 3 9 2 02 18 15 USIGIN RESOLUTION	
Start time: 15:18:31 11-07-2016 (11)	(tem)							
osc	l <u>ysozyme benz</u>	3	Nb images: 250 Exp. time: 0.037 s Phi range: 0.10 ° Flux: 2.2E10 ph/sec Detector resolution: 1.50 Å Transmission: 1.00 Wavelength: 0.912 Å Total expo time: 9.25 s	EDNA_proc Service fastproc Service fastproc Control for the service factor for the service for			20 	

Lysozyme-Benzamidine crystals

- 9 datasets collected: (24° or 36°; 1% transmission; 0.037s; 0.1° per image)
- 8 merged using (HCA)

Data collection statistics

Wavelength (Å)	0.91165
Space group	P4 ₃ 2 ₁ 2
Cell Dimensions a, b, c (Å)	79.4, 79.4, 38.0, 90, 90, 90
Molecules per asymmetric unit	1
Resolution (Å) (final shell)	50-1.5 (1.53-1.5)
Observed Reflections	324,244 (5,095)
Unique Reflections	18,246 (847)
Completeness (%) (final shell)	91.7 (87.5)
R _{meas} (%) (final shell)	8.6 (48.6)
<l σ(l)=""> (final shell)</l>	21 (3.4)

Model quality indicators

R _{cryst} (%) / R _{free} (%)	16.5/17.8
rms deviations, bonds (Å)/angles (°)	0.01/1.1

Giordano et al. (2012) Acta Crystallogr. D Biol. Crystallogr. 68, 649-58.

Lysozyme-Benzamidine crystals

2Fo-Fc Map contoured at 0.6 σ

ID30B – Develop a flex plate gripper

EMBL

ESRF

EMBL instrumentation team

Advanced instrumentation and software

MxCuBE

LONI

ID30B – To do

Immediate future

- Finalise Unipuck 'double' gripper integration in MxCuBE
- Finalise in situ plate screening
- Finalise MXPress automatic data collection WFs (as on MASSIF-1)

Near future

- Implement Flex plate gripper (prototype under construction)
- Develop plate functionalities in ISPyB/Exi ISPyB)
- Develop CRIMS-ISPyB connection for crystal 'marking'
- Develop and implement dynamic beam size routines
- Add move to Si strip for low energy ranges

Future

- Improve long term beam stability
- Automate data collection from plates (MASSIF style)
- Expand lower energy ranges (<6 keV)
- Phase plate commissioning (D. de Sanctis)

Acknowledgements

EMBL Grenoble

Stephen Cusack Regis Legrand

Matthew Bowler Hassan Belrhali *Akim Khadrouche* Babu Manjasetty <u>Uli Zander</u>

Florent Cipriani Franck Felisaz Robert Janocha Marcos Lopez-Marrero Gergely Papp Christopher Rossi Jeremy Sinoir Clement Sorez

Josan Marquez Guillaume Hoffmann **Zuzanna Kaczmarska**

EMBL Hamburg

Thomas Schneider Gleb Bourenkov Ivars Karpics

ESRF

Jean Susini Harald Reichert

Gordon Leonard Sean McSweeney (NSLS II) Christoph Müller-Dieckmann Daniele de Sanctis David Flot Stephanie Monaco Max Nanao **Didier Nurizzo** Sasha Popov David von Stetten Pascal Theveneau **Hugo Caserotto Fabien Dobias** Thierry Giraud Mario Lentini John Surr Antonia Beteva Matias Guijarro **Olof Svensson** Alejandro de Maria Solange Delageniere **Carole Clavel**

UVHCI/IBS

Eva Pebay-Peyroula Winfried Weissenhorn

Sandrine Vignon Sylvie Costa Corinne Iodice

Advanced Research Instrumentation for Neutrons & X-rays

