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Abstract

X-ray Absorption Fine Structure Debye-Waller Factors.
by Anna V. Poiarkova

Chairperson of Supervisory Committee: Professor John J. Rehr

Department of Physics

For accurate x-ray absorption fine structure (XAFS) spectra calculations, especially
in complex and disordered systems, it is crucial to have an efficient and reliable
method for obtaining multiple-scattering XAFS Debye-Waller factors. Traditional
phenomenological models such as the correlated Debye and Einstein models, often
fail to provide sufficient accuracy in the mean square half-path length fluctuation,
o?. To overcome limitations of such isotropic models we introduce two alternative
methods for the Debye-Waller factor calculations: the equation-of-motion method
and the recursion method. These are generalized for a multiple-scattering case from
their original single-scattering formulation.

The equation-of-motion method is an efficient local method for calculation of the
mean fluctuations 0]2 in XAFS Debye-Waller factors for a general scattering path j.
Given a few local force constants, the method yields 0]2 via the projected densities
of modes or via the displacement-displacement correlation function in real time, over
a few vibration cycles. Sample applications of the method are presented for crys-
talline Cu and Ge, and for several organometallic molecules. XAFS Debye-Waller

factors in anion of tetrachloroferrate (II) were calculated via the equation-of-motion

method using dynamical matrix obtained from ab initio computation via density



functional theory by means of the DGauss program. These ab initio Debye-Waller
factors were then used in XAFS calculations in tetramethylammonium tetrachlorofer-
rate (1I). Debye-Waller factors were also calculated for single- and multiple scattering
paths in a molecule of oxidized Pyrococcus furious rubredoxin and a molecule of zinc
tetraimidazole based on force constants fitted to experimental vibrational spectra.
Also, efficient local recursion method is presented for 0]2 calculations. Instead
of computing entire projected densities of modes, the calculations are based on a
double é-function representation. Sample application of the method is presented for
Cu crystal. Both methods have been implemented as FORTRAN 77 FEFF compatible
computer programs SIGEM and SIGRM. Discussion on calculation of anharmonic and

spherical wave corrections is presented.
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Chapter 1

INTRODUCTION

Make everything as simple as possible, but not simpler.

Albert Einstein, (1879-1955)
1.1  Overview of the problem

In the context of temperature dependence of XAF'S spectra, the theory of the single-
scattering (SS) XAFS Debye-Waller (DW) factors and their relation to the molecular
force field (FF) was first introduced by Beni and Platzman [8] in 1976. Today, more
than 20 years later, XAFS DW theory is still lacking general ab initio formulation
and application of the XAFS analysis to study vibrational properties of solids has
been hardly explored [9]. In recent years XAFS analysis has become an important
and widely used technique for determining local microscopic structure of complex and
disordered materials. The structural information it provides includes average near-
neighbor distances R, their mean square fluctuations o%, and coordination numbers
Npg. The quantities ¢% which appear in the XAFS DW factor are crucial to the
success of the modern theory of XAFS and its applications. The DW factor ac-
counts for thermal and structural disorder and generally governs the “melting” of
the XAFS oscillations with respect to increasing temperature and their decay with
respect to increasing photoelectron energy. In practice, the DW factors of the many
multiple-scattering (MS) terms in the XAFS signal can significantly complicate the
analysis [10-12]. In an attempt to overcome these difficulties we developed two gen-

eral methods for calculating the DW factors in terms of a few local force constants in



arbitrary aperiodic systems: the equation-of-motion (EM) method [13,14] and the re-
cursion method (RM) [15]. These methods also provide a basis for fitting parameters
of molecular FF models directly to XAFS spectra.

Before presenting detailed mathematical formalism, it is useful to give a qualitative
description of the origin of the XAFS DW factors first. Absorption of an x-ray
photon by an atom induces excitation of a single deep core electron which then
undergoes a series of scattering from the surrounding atoms before returning to the
absorbing center. The course of scattering can involve either a single scattering site,
i.e. the SS process, or several sites, the MS process. Due to thermal vibrations, @;, of
the scattering and absorbing atoms, their positions become smeared out around the
equilibrium sites. Mean square fluctuations, 0]2, in the lengths of the photoelectron’s
scattering paths quantitatively account for this effect on the XAFS amplitude via an
exponential factor, the DW factor.

The diagram in Fig. 1.1 summarizes the problem of the XAFS DW factor calcu-
lation presented in the following sections (for description of the symbols used in the
diagram see Sec. 1.4.1). As mentioned above XAFS, y(k), provides valuable struc-
tural information. Because of the relation between 0]2 and the projected vibrational
density of states (VDOS) p;(w), the fluctuations o7 can be used to obtain informa-
tion on interatomic interactions in the form of the local force constants, ;. This
dependence opens a possibility to fit the FF parameters directly to the experimental
XAFS spectrum. This is the, so called, inverse problem. On the other hand, it is
valuable to first solve the direct problem of calculating values of 02 based on a given
dynamical model. A derivation of the formula expressing 0]2 via p;j(w) and the pro-
jected reduced mass p;, as well as definitions of these new quantities, will be given
in the next chapter. This dissertation is aimed at solving the direct problem but also
outlines a solution for the inverse one.

Similarly to the XAFS DW factors, there are also DW factors which appear in
the x-ray diffraction (XRD) and Méssbauer effect. Here the thermal vibrational
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parameter analogous to 0]2 is the mean square vibration of an atom 2 in direction e
and is equal to u?, = ([u;- 1%]2> It can be calculated using the same frequency domain
formula as we derived for 0]2 but with projected VDOS replaced by total VDOS and

p; with mass of the atom at the site 2, M;.

1.2 Goals

The primary goal of the conducted research and the dissertation was to develop,
implement, and test general prescriptions for MS XAFS DW factor calculations. In

order to achieve this goal the following work has been done:

o Generalization of the original SS EM method for MS case.
o Computer implementation of the EM method.
e Research and analysis of different FF models.

o Testing of the EM method and analysis of the calculated vibrational spectra

for both crystalline and disordered materials using different FF models.

e Search for an ab initio code which would allow the calculation the FF parameters

from first principles (DGauss is one answer for biological molecules).
o Ab initio calculation of the FF in biological systems.
o XANES and XAFS analysis in organometallic compounds.
o Generalization of the original SS RM for a MS case.
o Computer implementation and testing of the RM.

e Calculation of anharmonic corrections.



These goals have been successfully achieved, and the results are presented in the

following chapters.

1.3 Dissertation overview

In the Introduction (Chap. 1) we provide a short summary of the formalism underlying
the MS XAFS DW factor theory as well as a brief review of two popular isotropic
models, the correlated Einstein (CE) and correlated Debye (CD) models, used for its
calculation. Chapters 2 and 3 describe two alternative approaches to o2 calculations,
the EM method and the RM, and their applications. The formalism in these chapters
is self-contained, although additional background on different FF models might be
useful.

Chapter 4 offers a prescription for ab initio MS DW factor calculations in or-
ganic systems on example of tetrachloroferrate (II). The results of this example ab
initio calculation are then used in the XAFS analysis of tetramethylammonium tetra-
chloroferrate (II). Chapter 5 reviews some of the higher order corrections to XAFS
DW factors. Descriptions of the EM (SIGEM) and RM (siGrRM) FORTRAN 77 com-
puter programs which were developed and used in the present study are given in the
Appendix. And, finally, the conclusions of the conducted research are presented in
Chap. 6.

One might find helpful a list of abbreviations used in the dissertation:

o XAFS — x-ray absorption fine structure

EXAFS — extended XAFS

o XANES — x-ray absorption near edge structure

e MS — multiple scattering

SS — single scattering



o DW — Debye-Waller

e CD — correlated Debye

o CFE — correlated Einstein

e EM - equation-of-motion

e RM — recursion method

e VDOS — vibrational density of states (p(w))
o FF — force field

o VFF — valence force field

o UFF — Universal force field

e MM — molecular mechanics

1.4 Multiple scattering XAFS Debye-Waller factors

1.4.1 Formalism

In this work the DW factor exp (—W;(k)) for a given scattering path of total length
2r; is defined by the thermal and configurational average of the oscillatory part of

the XAFS signal

<ei2k7«]> _ eiZkRje—WJ(k)7 (1.1)

where the index j corresponds to the jth scattering path. Curved wave effects on
the DW factors are usually negligible and will be ignored here [16]. We also neglect

anharmonic corrections. In the weak disorder limit (or harmonic approximation), this



DW factor is a Gaussian, W;(k) = 2k*c?, where o7 = ((r; — R;)?) is the mean square

variation in the effective or half-path length R; = (r;) appearing in the standard
XAFS equation,

N‘52 . _ _ 90522
(k) = 0 SR e, ) [ sin(2K R, + 6,k (12)
; J

J

Here the sum runs over all unique scattering paths j (i.e. both single scattering (SS)
and MS paths) of degeneracy N;, f;ﬂ(k, R;) is the effective curved-wave backscatter-
ing amplitude, S? is a many-body amplitude reduction factor, ¢;(k) is the net phase
shift, k = [2(F — Er)]'/? is the wave number measured from threshold Ep, and X is
the photoelectron mean free path.

To better understand the nature of MS DW factors it is useful to examine their
origin. The XAFS spectrum y is defined as the normalized, oscillatory part of the
x-ray absorption coefficient u, i.e., x = (¢t — o)/ fto, Where pg is the smooth atomic-
background absorption. According to XAFS theory y can be expressed as a thermal
average [10]

N;SZFET (k) |
X(k) _ Im <Z J Oj;jrz( r])eZ(QkT]+25c)—2T]//\> 7 (13)
J

J

where 6. is central atom phase shift and r; is a dynamical variable equal to the in-
stantaneous effective length of a scattering path j. The radial dependence of f;ﬂ
goes as 1/r; and constitutes only a small correction to the amplitude [12]. Assum-
ing small disorder and, since 1/r; and exp(—2r;/A)/r? vary more slowly with dis-
tance than exp(i2kr;), neglecting curved wave effects from the r; dependence of f;ﬂ,

exp (—2r;/A), and 1/r7 ' we have

! Radial dependence of eXp(—er//\)/r]2 leads to an additional phase shift equal to —4]6’0']2/R]'(1 +

R; /) which is linear in & and is significant only for systems with large disorder [12,17].



N;S2FR (kLR |
X(k) :Imz J OkJR2 J 62265—2]%]//\ <622k7°]>7 (14)
J

J

where the thermal average is given by

< i2krj> B Tre—PH gizkr; (15)
c  Tre#H '

Here H is the lattice Hamiltonian and 3 = 1/kgT. Now let @; be the displacement

from equilibrium of the ion at site 7, so that neglecting terms of order u?, the effective

path length for a scattering path j with n; scattering legs is

1. ,
r; ~ RJ‘ + 52(% — UH_) . R“_|_ (16)
=1

Here i+ =141, 7 = n;+1 corresponds to site ¢ = 1, R; = (1/2) >, Rii4 is, as before,
the effective equilibrium path length, Ry is the equilibrium interatomic distance
between atoms ¢ and ¢+, and ]%”'4_ is the corresponding directing unit vector. From
the Born-Oppenheimer approximation, the ion motion can be regarded as stationary
during a transition. Hence, the thermal averages are to be carried out in the ground
state prior to x-ray absorption, rather than in relaxed final states. Now, for any

harmonic Hamiltonian or gaussian disorder one has the exact result [18§]
[ty ) - oo (1.7
where 0]2 denotes the mean square fluctuation in the effective path length R;

o] = i <[i:(ﬁz’ — Uiy ) - 1%2»2»+]2> : (1.8)

=1

For example, in the SS case of two atoms at sites 0 and ]%,



Thus, if one neglects the variation of all terms but the rapidly varying oscillatory
function in Eq. (1.3) and assumes small harmonic displacements, o,/ R; < 1, Eq. (1.2)
is recovered.

Equation (1.8) shows that 0]2 is not merely a sum of mean square displacements
(u?) at scattering sites but also includes the displacement-displacement correlation
terms (u;ougg), where a and [ denote Cartesian indices x, y and z. These correla-
tions decay algebraically with distance and are such that only modes contributing
to motion along a bond path are important. Therefore, in contrast to the mean
square displacement (u? ) which appears in the x-ray diffraction DW factor, 0]2 de-
pends on fluctuations in pair distances and, thus provides a direct measure of the
displacement-displacement correlation function. As will be shown below 0]2 is also re-
lated to a certain projected local vibrational density of states (VDOS) and, therefore
is determined by the local vibrational structure.

We will discuss our results in comparison with two isotropic models commonly
used for calculations of the XAFS DW factors, namely the CD and CE models [19].
Such an isotropic approach may not be able to provide an adequate description of
vibrational properties for heterogeneous structures and, hence can lead to poor agree-
ment with experimental data. Therefore, it is important to have a more general mi-
croscopic approach to the DW factor calculations which could be effectively applied
to SS as well as MS terms.

In the following two subsections we will briefly review the standard CD and CE
models often adopted for approximating XAFS DW factors and which are used for
comparison with EM method in Chap. 2-3.

1.4.2  Correlated Debye model

The CD model is essentially a spherical approximation to % in terms of the eigen-
modes (Eq. (2.9)) and leads to a projected VDOS for an atomic bond (6, é) of the
form [19]
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B 3w?

pr(w) = [1 -

e sin(wR/c)] ‘ (1.10)

wR/e
Here wp = kglp/his the Debye frequency, 6p is the Debye temperature, ¢ = wp/kp is
the Debye approximation for the speed of sound, kp = (672N/V )3 and N/V is the
atomic density number in the crystal. The second term in the brackets accounts for
correlations and depends on bond length. In the CD approximation the displacement-

displacement correlation function, which appears in Eq. (1.8), can be written as [11]

kgT ! i
(Uigtjg) = 3#/ dw y sin(wz) coth %, (1.11)
sz MZM] 0 X 2
where © = kpR;;, y = 0p/T, and w is a dimensionless frequency variable. This

integral is implemented in the FEFF [20] code using a Simpson-Romberg algorithm.

1.4.3 Correlated Einstein model

The CE model approximates the vibrational spectrum with a single delta-function
centered at the effective vibrational frequency wg(R;), which in general, depends on

the path of interest,

pilw) = 8(w —wi(R))). (1.12)

The Einstein frequency wg(R;) for the XAFS DW factor for scattering path j can be
interpreted in terms of the local potential energy in the deformed lattice state |@Q;(0)),
e, Wi (R;) = (Q;(0)|D|Q;(0)). In the SS case, for example, wg(R) is related to the
local effective bond-stretching force constant kr = prwi(R). This value of wg(R) is
equivalent to the “natural” vibrational frequency of the bond (6, é) together with all
attached neighboring bonds, but regarding all other masses as fixed [7,21]. Similarly,
for a MS path j the potential energy (1/2)k;jo? of a stretched path j with path
length fluctuation 20; is equal to that of a single spring model with reduced mass p;

(see Eq. (2.11)) and spring constant k; = pw3 (R;). The CE model is particularly
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Figure 1.2: Projected VDOS pr(w) for the first shell of Cu calculated using the EM
method with N = 459 and k& = 27.9 N/m (solid), in comparison with the CD (long
dashes) and CE (short dashes) models.

appropriate for materials with p;(w) sharply peaked around a single frequency, but
otherwise has most of the advantages and disadvantages of the CD model.

In general, depending on the form of the vibrational spectra, one or the other of
these phenomenological models may provide a better approximation, but neither is
usually adequate for heterogeneous systems. Plots of projected VDOS pr(w) for the
first shell of Cu calculated using our non-isotropic EM method with a single central
force constant (k; = 27.9 N/m, see Sec. 2.5.1 for details), the CD (§p = 315 K [22])
and CE (g = hwg/kp ~ 3/40p ~ 236 K) models are presented in Fig. 1.2.



Chapter 2

EQUATION-OF-MOTION METHOD

Although the EM method was first introduced over 20 years ago, it has never
been applied to calculations of the MS XAFS DW factors up until now. In fact, up
to this time the MS formalism has never been developed. The importance of having a
general non-isotropic approach for calculations of this kind has been already outlined
in Chap. 1. Here we present a general formalism of the EM method in relation to
the SS and MS XAFS DW factor calculations together with the results of its sample
applications to crystalline Cu and Ge, and the organic molecule of zinc tetraimidazole
(Sec. 2.5).

The EM method is a finite temperature method first introduced by Beeman, Al-
ben and Rehr [23-25] for calculation of total VDOS and related quantities. This
technique builds in Bose-Einstein statistics and allows one to calculate O'JZ(T) either
in real time or in the frequency domain. The EM method is a significant improve-
ment over conventional isotropic models such as the CD and CE models. It is very
efficient for large systems since diagonalization of huge matrices is not required and

the computational time scales linearly with the size of a cluster.

2.1 Formalism

The EM method is based on solving 3N coupled Newton’s equations of motion with
initial conditions depending uniquely on a given scattering path, where N is the
number of atoms in the cluster. Regarding the total potential energy V of the crystal

lattice as a function of the atomic displacements ; from their equilibrium positions,
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and making use of a harmonic approximation, one obtains the equations of motion

[18],

d*Qia(t)
—z = %: Dia 15Qxgp- (2.1)

Here QZ = u;\/M;, M; is the mass of the atom at site ¢, and Dio s = (I)m,kﬁ/\/m
is the dynamical matrix of order 3N x 3N where ®,, ;53 are the second derivatives of
the potential energy with respect to the atomic displacements w;, and ugg taken at
the equilibrium configuration. Upon substituting the canonical displacement vectors

(); expanded in normal coordinates ¢,

Q=Y &M a (2.2)

into the definition of the mean square fluctuation in the effective path length R, these

equations of motion lead to a standard eigenvalue problem for the normal modes,

wi Qa()\) = Z Dia,kﬁ ékg()\). (23)
kB

Then evaluating the thermal average using Bose-Finstein statistics,

1 h h
R = (o) + g = 2 ot "2, (2.4)
one obtains a frequency domain formula for 0]2,
h o [9me dw Bhw

Here p; is a projected, or effective, reduced mass for scattering path j that insures

normalized initial conditions (see Eq. 2.11), 8 = 1/kgT, wnax 2 21/ k1/p1 is maxi-
mum frequency of the lattice motion, z is the coordination number, k; is the central
first-neighbor force constant, uy is reduced mass of the scattering center and its first

neighbor, and
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Figure 2.1: Example of the displacement-displacement autocorrelation function with
a cutoff term, F(7) = (Q1(7)]|Q1(0))e™="", for the first shell in Cu at 300 K vs a
dimensionless time parameter 7 = ¢/{y. Fourier transform of this function defines

projected VDOS (see Eq. 2.6).

() = S IOIQONFoslw —w) = = QDI ) coswte Tt (2:6)

A

2
max

is the projected VDOS contributing to 0]2. In the time integration ¢ = 3/t
and 0, = \/6/(wmwA) are cutoff parameters that fix the net spectral resolution
width A (typically 5% of the bandwidth), éa is a narrow 6-like function of width
A, (Q;(1)|Q;(0)) = E:”a Qia(1)Qin(0) is the displacement-displacement autocorrela-
tion function. The displacement state vector |@Q;()) is determined by integrating
the equations of motion (2.1) numerically using a two-step difference equation ap-
proximation with initial velocities set to zero and initial displacements |@);(0)). The

specific form of the initial displacements depends on the scattering path, as defined

below. The cutoff parameters are introduced for efficiency in the calculation, and
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focus on the local environment by cutting off long distance behavior.
By substituting Eq. (2.6) for p;(w) into (2.5) and evaluating the Fourier transform,

one obtains an equivalent real time expression for O'JZ(T)

tmax

o) = [ 01,0 n |2sinn T 27)
Therefore, in principle, it is not necessary to determine p;(w) as an intermediate
step, and O'JZ(T) can be explicitly calculated from the corresponding displacement-
displacement autocorrelation function. Note that in the time domain the Bose-
Einstein weight factor is equal to —In[2sinh (#t/3h)] and reduces for long time ¢
to —7t/Bh at high temperatures and In (#h/27t) at low. The time integration limit
tmar 18 usually of the order of a few vibrational cycles and requires typically 25-35
time-steps per cycle. All the integrals in our implementation of the EM method

are evaluated using the trapezoidal rule, which is appropriate for highly oscillatory

integrands.

2.2 Multiple scattering o?

Let us now apply the EM method to calculation of 0]2 for a general MS path. The

sum of terms in Eq. (1.8) can be regrouped in the following way,

n . . 2
- Ry + Ry

([ (s .
=1

Adopting a vector expansion of the displacements from Eq. (2.2), and evaluating the

average using Bose-Einstein statistics (Eq. (2.4)), one can rewrite Eq. (2.8) as

h 1 Bhw) i R+ Ray\ .
2o PN ot I USRI T
U] QIMJ‘ 3 Wi 0 2 22: [ MZ ( 2 ‘ ( )

2

(2.9)

The term in square brackets corresponds to the weight |(A\|@;(0))|? in Eq. (2.6) and
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can be interpreted as the normalized probability that the initial displacement state,

i.e. the N-dimensional vector with only n; non-zero components

Il
=
—~
oy
7
_|_
oy
—T—'
~—
T~
[N}
“@
Il
—
=
<

|Q;(0)) N (2.10)

is in vibrational mode |A) = |€1(A),...€n(A)). Here p; is defined so that (();(0)|Q;(0)) =
1, which forces the projected VDOS p;(w) to be unit normalized,

n A A 2
1 ~ 1 [ Ru_+ Ry
— = Miiz & T ) (2.11)
pio = M; 2
For example, in the special case of SS the EM initial displacement state is defined as
SNEY
]\ﬁng

|Qr(0)) = , (2.12)
0

where up = (1/Mpg + 1/My)~" is the reduced mass for the (6, é) bond pair.

In order to simplify Eq. (2.9) one can define a normalized, local VDOS p;(w) as
in Eq. (2.6), which leads to the frequency domain formula for MS o in Eq. (2.5).
The VDOS spectrum p;(w) can be interpreted as the “sound” of the lattice plucked

along the displacement vectors given by the initial conditions.

2.3 Force field models

The EM formalism presented above gives a relation between XAFS DW factors and

the local microscopic environment around the scattering center. In order to apply



17

the method, knowledge of the local FF describing effective interatomic interactions
or dynamical matrix D is required. Clearly, the choice of the model depends on the
type of the interatomic bonds. For practical considerations the model should be kept
as simple as possible, i.e. the number of its independent parameters should be small
yet sufficient to avoid unphysical zero frequency modes and to have an accuracy to
within a few percent.

One commonly used model is the VFF model [26-28] which expresses energy
changes in terms of changes in “internal coordinates” such as bond lengths ér;; =
(u; — ;) - fx’ij, bond angles 66,1, and torsional angles (or dihedrals) 67,1 Since the
latter typically are very small (under a few percent of the leading bond stretching
interaction), we will ignore them in our FF model. The potential energy of the lattice

deformation in this case can be written as a quadratic form

V= %Zk;’i(&rij)? + %Zk;ﬂf(wijk)? .. (2.13)
Here k% is a bond-stretching force constant for nearest neighbors ¢ and j, kéjk is a
bond bending force constant corresponding to an angular rigidity for the angle 0,4,
and remaining terms are due to contributions from non-central interactions propor-
tional to products of changes in different internal coordinates, e.g. (ér;) - (67j1),
(6ri;) - (68:51), etc. Because interatomic bonds are crucial for describing interactions
in molecules and covalent crystals, the VFF model is particularly effective for such
structures. An advantage of the model is that the dependence of the deformation
energy solely on deformations of the bonds makes it rotationally invariant. For some
materials (e.g. copper crystal) only a single near neighbor force constant is needed
to approximate most of the structure in vibrational spectra and to obtain 0]2 in good
agreement with experiment. Sometimes it is more convenient to introduce effec-
tive central interactions with further neighbors rather than using bond angles and/or

cross-terms, although such interactions may not correspond to “real” chemical bonds.
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We adopted this type of interaction in our method in addition to the interactions in
the traditional VFF model.

There exist a large number of other prescriptions for treating lattice deformations.
These include the Born [29] and Keating [30] models which are used primarily for
diamond-type crystals. In any case, the first near neighbor central forces-constants
are usually the largest in the interaction picture.

In the present chapter we will not consider effects arising from anharmonic correc-
tions to the potential energy. In general, anharmonicity leads to interactions between
the various modes, and gives a contribution to O'JZ(T) that increases with tempera-
ture. Further discussions on this topic can be found elsewhere [7,17,21,31]. Due to
anharmonic effects, the Gaussian approximation for DW factor Eq. (1.1) is not pre-
cisely valid, and the general cumulant expansion [12,17] has to be considered instead.

These corrections are briefly discussed in Sec. 5.1.

2.4 How to find the right FF model

The answer to this question largely depends on the system for which FF model is
needed. Unfortunately, as of now, there is no single solution to this problem. There
is an extensive review of the existing FF models by Landis et al. [28] (includes 251
references) which I would strongly recommend reading for anybody who is interested
in FF models in application to organometallic and organic materials and/or would
like to have a better understanding of the current situation in molecular mechanics
(MM) methods and computations.
The problem of finding the “right” FF model can be subdivided into two parts:

e Defining appropriate molecular topology (i.e. which atoms are bonded to

which).

e Choosing the corresponding form of FF and determining its parameters.
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Molecular topology determines the choice of the internal coordinates which in turn
effects the choice of a FF model. In addition to bonded interactions (bond stretches,
bond angles, torsions) to which we limited our VFF, some models used in MM also in-
clude nonbonded interactions (i.e. van der Waals and electrostatic interactions) [28].
In organic compounds the molecular topology is chosen in accordance with chemical
localized bonds, and usually, is well defined. But in inorganic and organometallic
materials which typically have highly delocalized bonding interactions and high co-
ordination numbers dependent on the nature of ligands, assignment of bonds can be
unclear (problem of indistinct topologies) [28]. An excellent reference source of struc-
tural and topological information for a great variety of inorganic and organometallic
materials is Structural Inorganic Chemistry by A. F. Wells [32].

Since VFF is, perhaps, the most widely used model in modern MM and is the
one adopted in our study, we will limit discussion of obtaining force constants to this
particular model. However, not all VFF or VFF-based models are defined identically.
Often VFF models are used in combination with Coulomb bonded and/or nonbonded
interactions. There is also some freedom in the choice of a set of internal coordinates,
as well as, in inclusion of off-diagonal terms (e.g. coupling between different stretches,
angles, ete.) [28]. Since, there can be nonvanishing correlations between parameters
of the same model, the question of transferability has to be addressed before trying
to adopt force constants fitted within one set of parameters to a calculation based
on a different set of parameters even for the same material. Within the accuracy
requirements for o calculations (10-20%), most of the smaller parameters, such as
torsions and off-diagonal terms, can usually be ignored, but Coulomb interaction for
bonded terms has to be accounted for. Also, there is a strong correlation between
first and second nearest neighbor stretches.

Existing approaches to FF calculation can be subdivided into the following three

categories:
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e it to experiment.
o Ab initio analytical calculations.

o '} parameterization and semiempirical methods.

2.4.1 Fit to experiment

FF parameters can be fit to a certain type of experimental data. The most direct
approach in our case is to fit the force constants to the the measured XAFS spectrum
much like Debye and Einstein temperatures are now being fit [12]. This can be
done by including the SIGEM subroutine (see Appendix A) into the FEFFIT code [33],
or by expressing Einstein temperature (frequency) in terms of force constants [34].
For example, for the first nearest neighbor single force constant in monoatomic fcc
crystal lattices wg(Ry)? = 4k /M [35] (assuming the force field consists of only one
force constant which is a good approximation for fcc structures). Also, there is a
relation between Debye and Einstein frequencies. For example, in fcc and bcec lattices
wr(R1) ~ 3/4wp [17,19]. These leads to the following formula connecting k; and 6p

in fce structures,

M [(3kgbp\°
b= — (2 2.14
! 4(4 h) (2.14)

Hence, for Cu one would have k; = 25.2 N/m (0p = 315 K, M = 63.55 u. [22]) and
for Pt k1 =41.3 N/m (0p = 230 K, M = 195.09 u. [22]). In general, for a force field
approximated with a single nearest neighbor force constant, kg, wi(R) = ( kr/pr
where ( is a constant depending on the symmetry of the structure. If one roughly

(the error can be up to 25%) approximates the actual w#(R) with the second moment

my of the dynamical matrix ! (see Chap. 3), then ¢ = (Qr(0)|A|Q&(0)). Here matrix

L A more realistic approximation would be wg = 1/2 [(m_1)™' + (m_2)~'/?] [17,25].
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element of A for a bond Ry, between two nearest neighbors [ and m characterized
by the stretching force constant kg and reduced mass up is defined as

Ay p(lm) = R S — Afmﬁifm> (2.15)

N

R R
with the sum running over all nearest neighbors of atom m.

Huber and Herzberg compiled available vibrational (including Einstein frequen-
cies) and structural data for all diatomic molecules and ions [36]. General formu-
las which relate parameters of VFF model with the normal modes for a number of
molecules (e.g. XYy, X2Ys, XYy, XYZ, etc.) are provided by Cyvin [37].

With some luck one can find force constants for the material being studied al-
ready fitted to some kind of experimental data in available publications. Although,
one should keep in mind that fitted force constants even for the same material can
vary greatly depending on the type of experimental data used in the fit. Since our
force constants are of vibrational nature, the experimental data has to be chosen
accordingly. For example, fits to experimental phonon dispersion curves (e.g. see [38]
for ¢-C, ¢Si, ¢-Ge, and a—Sn, [39] for MnO, CoO and NiO, [40, 41] for selected
alkali halides), inelastic neutron scattering (e.g. see [4] for zinc tetraimidazole, [42]
for CH3CCO3(CO)g), infrared and/or Raman (e.g. see [43] for rubredoxin, [44] for
Ge and Si) spectra, elastic constants (e.g. see [45] and [30] for selected tetrahedrally
coordinated semiconductors) are appropriate, whereas fits to structural and thermo-
dynamic data usually are of very limited use in our case. Osawa and Lipkowitz [46]
provided an extensive list of references (more than 400) to published empirical FF's
for organic and organometallic compounds.

Occasionally, especially in solid state physics, the form of the potential is chosen
as a function of interatomic distances, U(R), e.g. Morse, Born-Mayer, or Coulomb
potentials [22], and parameters defining the form of this function are fitted to experi-

mental data rather than the single force constants. In this case, single force constants
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can be obtained by expanding the potential function in Taylor series (see [7] for an

example application) [47].

2.4.2  Ab initio calculations

A number of codes which allow ab initio calculation of Hessian matrix, or matrix of
second derivatives, (one would simply need to scale its matrix elements by appropriate
mass parameters to get dynamical matrix) has been developed over the last 20 years.
These include DGauss [48,49], Gaussian [50], and CADPAC [51,52] which are incor-
porated into the UniChem software package [53] developed within the Cray Research
Center. DGauss is a molecular density functional theory (DFT) [54,55] program
using Gaussian-type molecular orbitals and designed for studying electronic, mag-
netic, and structural properties of atoms, molecules, and clusters. The use of DFT
allows an approximate inclusion of electron correlation, an effect which is known to
be important in the accurate prediction of molecular properties. DGauss features
include calculation of analytic second derivatives, IR frequencies and intensities, Ra-
man frequencies, electron densities of states (DOS), electrostatic potential fit charges,
multipole moments, etc. DGauss allows to perform geometry optimization to both
minima and transition states. It also offers a choice of exchange-correlation potentials
to use in self-consistent field (SCF) calculations between a local density approxima-
tion (LDA), including different forms of Vosko, Wilk, and Nusair (VWN) functionals,
and a general gradient approximation (GGA), including different forms of Perdew-
Wang (PW) functionals (88-PW91, PW91-PW91) and others (B88-P86 (also called
BP), and B88-LYP (also called BLYP)). Hessian is calculated using second derivative
equations derived by Komornicki and Fitzgerald [56]. Due to the sizes of atomic
basis sets used in DGauss to represent the molecular orbitals, calculations for sys-
tems of more than 15 atoms usually become very time consuming. Because of these
system size limitations, it might be impossible to carry out geometry optimization

and dynamical matrix calculation for an entire molecule in question but rather for a
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small part of it which is of the most interest (for an example case see Section 4.1).
Clearly, structural and vibrational properties of this fragment uneffected by force
field from the rest of the structure can be different from those of the whole molecule.
Thus again, in choosing the size of the fragment the question of transferability of the
resulting force constants has to be considered. Also, a reasonable accuracy can be
achieved by applying ab initio method to FF calculation for only a small fragment
of the structure while using semiempirical FF for the remaining part. The accuracy
of the calculated second derivatives in DGauss is typically around 10%. DGauss is
considered to be one of the most reliable ab initio codes. Example application of
DGauss for an anion of tetrachloroferrate (II) is presented in Section 4.1.

Gaussian is a system of programs which performs ab initio, density functional
and semiempirical molecular orbital calculations. Analytic first derivatives are com-
puted using MP2 method (second-order Moller-Plesset perturbation energy [57]),
and computation of second derivatives is based on CASSCF (Complete Active Space
Self-Consistent Field) method [50]. CADPAC (Cambridge Analytical Derivatives
Package) uses ab initio molecular orbital theory to compute properties of atoms and
molecules quantum mechanically. It is based on SCF approach and Gaussian atomic
basis set and supports Hartree-Fock wavetunctions. CADPAC can calculate force
constants by fully analytic methods (SCF, MP2, DFT) or by finite difference of gra-
dients.

Force constants can also be derived from molecular dynamics simulation codes by
measuring change in the total energy or by tracking forces acting on atoms in the
bond of interest as functions of changes in relevant internal coordinates. This can
be done by using, for example, the ab initio Car-Parrinello (CP) [58] code developed
by Hannes Jonsson and his group [59] and based on generalized norm-conserving
pseudopotentials [60,61]. The method is implemented by using plane-wave expansion
of electronic orbitals and can be successfully applied to finite (less than 100 atom)

clusters of crystalline materials. Tests of the method for a 64-atom c-Ge cluster gave
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preliminary results for the first nearest neighbor force constant k=138 N/m in com-
parison with 120 N/m used in Section 2.5.2. Additional force constants corresponding
to different bond angle bendings can be obtained from CP molecular dynamics sim-

ulations by “freezing” all but a few relevant atoms in a cluster.

2.4.3  FF parameterization and semiempirical methods

The FF parameterization and semiempirical methods which adopt these parameter-
ized FFs are based on the assumption of transferability of the FF parameters from
one compound to another for similar bonds. In MM applications to organometallic
and organic systems, parameters of FF models are usually fit to such experimen-
tal data as infrared and Raman vibrational spectra [27], structural information, and
thermodynamic data. Since the use of structural data in fitting FF parameters is
the most frequent practice [62], the resulting FF models might be of limited use to
someone interested in vibrational properties. Although, these models are usually able
to predict force constants for typical organic bonds such as, for example, C-C, C=C,
N-C, N-H, ete.), within about 30%. They can also be used in combination with
ab initio methods. Because most of the efforts in development and implementation
of methods for FF calculations are concentrated in the areas of organic chemistry,
the available FFs (e.g. AMBER, CHARMM, MM1, MM2, MM3, DREIDING [28])
are parameterized generally for organic materials and without modifications either
can not be applied to inorganic and organometallic materials at all (for the lack of
needed parameters) or lead to poor agreement with experiment. Also, application of
these MM FFs is typically limited to molecules and is not suited for calculations in
inorganic crystals.

Although there has been some progress done in the direction of developing general
FF models, these models usually perform poorly for inorganic and organometallic
materials. One of the earliest models, which with some modifications is still being

widely used, is, so called, the Badger’s rules [63,64]. Badger expressed stretching
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force constant kgr for a bond between two arbitrary atoms in a molecule as a simple

function of the interatomic distance R:

Cy

b=
T (R—dy)

(2.16)

Here kg is in the units of N/m, R is in A, and (; and d;; are constants dependent
upon periodic table rows containing the two atoms (see Table 2.1). The accuracy of
the formula in predicting bond stretches is very inconsistent varying from an 8% error
for a diatomic molecule of SiF (in comparison with experiment [65]) to a 21% error in
CF and 12% in Na, molecules. Also, application of the model based on the original
Badger’s parameters is limited to mostly diatomic molecules and fails for crystalline
materials. There has been some work done on generalization of this original formula
(see a list of references in [66]). Badger’s formula with slightly modified parameters
has been used for prediction of force constants of large molecules using artificial
neural network (ANN) method [67]. Fischer et al. showed that ANN can provide
force constants within a 1.5 to 5% error band.

One of the recent and most general FF models available is the UFF (Universal
force field) model developed by Rappe et al. [66]. Parameters used in the UFF were
fitted for a large number of mostly organic molecules and depend on the types of ele-
ments in the bond, their hybridization, and connectivity. The total potential energy

of a molecule is expressed as a sum of valence (bonded) and nonbonded interactions:

V=Vr+Ve+ Vs + Vo, + Viaw + Vo, (2.17)

where bond stretching term Vg = 1/23 .. kg 6r3;, bond angle bending V5 = D ik kfjk X
>, Ay cosnd, dihedral angle torsion V, = Eijkl k?}ki >, Bncosnoij, and inversion
term V,, = Eiﬂd k;"jkl(Co—I—Cl cos w; k1 +C cos 2w, 51 ) are valence interactions, whereas

the nonbonded interactions consist of van der Waals forces
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Table 2.1: Values of the parameters in Badger’s model for diatomic molecules. Here

C;; is in such units that kg is in N/m.

Type of Molecule
Atom j Atom j Example Ciyi  di (A)
Element in row 1 Element in row 1 NO, O,  186.17 0.68
— row 1 — row 2 SO, PN 1.53 0.94
— row 1 — row 3 Ti0 1.25 1.06
— row 1 — row 4 SnO 1.18 1.18
— row 1 — row ) PbO 1.18 1.26
— row 2 — row 2 Clg, 59 1.18 1.25
— row 2 — row 4 ICL 1.29 1.48
— row 3 — row 3 Bry, K, 1.29 1.48
— row 4 — row 4 I, 1.18 1.76

Viw =3 _ Dy [‘2 (%)6 i <—>] ) (2.18)
]

and electrostatic interactions Voy = 3., 7Q:Q;/(eR;;). Here V is in units of joules,
v = 230.718 x 10720, coefficients A,,, B,, C, are chosen to satisfy appropriate bound-
ary conditions, D;; is the well depth, x;; is van der Waals bond length, ¢); and (); are
charges in electron units, I;; is the distance in A, and e is the dielectric constant (de-
fault e = 1). Note that nonbonded interactions are excluded for atoms that interact
via a bond stretch or angle bend (i.e. (1,2 interactions) and (1,3 interactions). In the
UFF model the bond length r;; entering into the formula for Vg is defined as a sum
rij =ri+r;+ro~+ren, where r; (r;) is a single bond radii, rgo = —A(r; +7r;)In (n)
is a bond order correction term (A = 0.1332 and n is the bond order), and rgy is
electronegativity correction of O’Keeffe and Brese [68] (it is typically a 1-3% correc-

tion and can be ignored in our case). The bond stretching force constants are based
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on generalization of Badger’s rules and defined by formula

* *

kij = Ar—3]] (2.19)
where k;; is in units of N/m, K = 461.43 and Z7 (Z7) is effective atomic charge in
electron units. The angle bend force constants are based on angular generalization
of Badger’s rules and defined by formula

kijk = ﬂ%[rijrﬂg(l — cos® 0y) — 2, cos O], (2.20)
where k;;x is in units of J/rad?, all r’s are in units of A, ry = r?j —I-T?k — 277k cos(fy),
and 8 = 461.43. Selected UFF parameters (r;, 6y, and Z;) are given in Appendix B
(Table B.1). For further details on these and other UFF parameters see the original
paper by Rappe et al. [66].

My experience with this table showed that it works fairly well for predicting strong
(above 400 N/m) organic bonds (e.g. C-C, C=C, C=C, N-C, C-H, N-H etc.) but
overestimates some organometallic bonds (e.g. Zn-N, Fe-Cl) and, for example, Ge—
Ge bond in crystalline Ge by about a factor of 2. The model absolutely fails for
such week bonds (under 20 N/m) as, for example, in diatomic molecules (e.g. CO,
LiCl, NaBr). Therefore, my recommendation in using this model for predicting force
constants is that it can be safely used for strong organic bonds, used with caution
(might want to divide the results by 2) for organometallic bonds which typically
fall into range of 80-200 N/m, and do not trust the numbers for bonds you think
are relatively week (below 70 N/m). Also, one should not rely on this model for
crystalline structures, and rather limit its use to large molecules. The limitations
in the accuracy of the UFF force constants are largely due to the fact that the
model’s parameters were fit mostly to structural data, and were developed primarily

for determining molecular structures. The model is known to predict well (within 0.1

A for bonds and 5-10° for angles) structural features of organic and organometallic
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compounds [66].

2.5 Applications

2.5.1 Cu

The first crystalline structure examined in our MS calculations was a 459-atom spher-
ical cluster of a copper crystal with fcc lattice symmetry. Although our method was
designed for general aperiodic systems, we chose fcc Cu since it has often been used
as a test case for DW and other XAFS studies and accurate XAFS data is available.
Following the model of Alben and Rehr [24], only a single central interaction between
the first nearest neighbors with force constant k&4 = 27.9 N/m was taken into account.

Example results for the first shell SS path and for the 111 triangular MS path
versus temperature are shown in Fig. 2.2 in comparison with the CD model (6p =
315 K [22]) results calculated by the FEFF code, as well as with experimental data [1,2]
and the CE model for the first shell (0 = 3/40p ~ 236 K [19]). Our results for SS
o% are in excellent agreement (within 0.3% for the first and second shells, and within
3% for the third shell) with those obtained by Sevillano et al. [19] using full lattice
dynamical calculations. Excellent agreement with experiment at lower temperatures
is also reached. At higher temperatures, i.e. above 500 K, the error between our
theory and experiment is likely due to anharmonic effects. The results for 0]2 indicate
that at all temperatures, the CD model is in good agreement with the EM method
for the first shell SS path, i.e. the 10% difference is within the error bars of the two
methods. A larger difference (about 25% at high temperatures) is observed for the
111 path. The discrepancies between the two models are smaller at low temperatures.
Projected vibrational densities of states p;(w) for the two paths are shown in Fig. 2.3a.
Note that the VDOS for the 111 triangular path has a sharper dominant peak at about
42 THz, i.e. the p;(w) is more monochromatic for this path. One can think about it

as the fine tone of a musical “triangle”. This feature also explains the bigger error in
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Figure 2.2: Mean square amplitudes 0]2 for a 459-atom cluster of Cu vs temperature
as calculated from a single force constant (k1 = 27.9 N/m) model for the first shell
(EM SS) and for the 111 triangular MS path (EM 111). The CD model (§p = 315 K)
calculations for the first shell (CD SS) and the 111 triangular MS path (CD 111) and
the CE model for the first shell (CE SS) are given for comparison. Points represent

experimental values of o2 [1,2].
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Figure 2.3: a) Projected VDOS p;(w) for the first shell (solid) and for the 111 trian-

gular MS path (dashes) for Cu calculated via the EM method. b) Total VDOS p(w)

and projected VDOS pr(w) for the first shell and sixth shells of Cu calculated via
the EM method.
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Figure 2.4: Radial dependence of the correlation function Cr calculated for Cu at
different temperatures using FEFF code and CD model with §p = 315 K. Points

correspond to different coordination shells.
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Table 2.2: Values of first shell SS ¢f and MS 3 for 111 triangular MS path as calcu-
lated using EM method in comparison with CD model (6p = 315 K) and experimental

values [6].

o2 x 107 A? o2 x 1073 A?

EM CD exp EM CD exp
10 [ 3.0(3) 3.2 3.4(1)|3.1(3) 3.6 4.2+3.0
50 | 3.1(3) 3.3 3.5(1) | 3.2(3) 3.7 4.143.0

150 | 4.5(4) 5.1 5.2(2) | 4.4(4) 5.8 53 +3.0

T (K)

the CD O'JZ(T) for this path. Fig. 2.3b illustrates the importance of correlations for
nearest neighbors as well as the decay of the correlation function with distance. Note
that the projected VDOS for the sixth shell is very similar to the total VDOS which
indicates that contribution from the correlations is negligible for the further shells.
A more quantitative illustration of correlations is shown in Fig. 2.4. The correlation

function

Cp = <(ﬁR - R)(io - 1%)> Jut =1 ok/(2u?) (2.21)

shows how fast o} is approaching u? = ((u - ]%)2> In CD approximation in low and

hight temperature limits one has [17,25]

2
sin(kp R/2)
< le;%/z > , I'—0

Si(kpR)
kpR

Cp = (2.22)

T — 0.

Note that correlations are stronger at higher temperatures and decay more slowly
with distance.

DW factors for MS triangular paths are usually very hard to fit due to the weakness
of XAFS signal contributed by these paths and their strong correlations with other

fitting parameters. As a result, o2 for these paths typically have very large error bars.
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Figure 2.5: Magnitude of the phase corrected Fourier transform y(R) = FT[ky(k)]
for Cu at T = 150 K as extracted from experiment using the phase corrected FEFFIT
code (solid line), and fitted using theoretical results with the DW factors calculated
via the CD (long dashes) and single force constant EM (short dashes) models.

Values of first shell of and 111 triangle o3 as calculated via EM and CD methods in
comparison with their values fit to XAFS experiment are presented in Tab. 2.2. As
one can see both methods provide results within the error bars of the experiment.
This study shows that overall the CD model is a reasonably good approximation
for Cu, which might be expected since the fcc structure is highly isotropic. This
also can be seen from a comparison of the XAFS Fourier transform y(R) with fits of
theoretical FEFF calculations using DW factors obtained via the CD model and the
EM method (see Fig. 2.5). Fits of theoretical Y(R) to experiment measured at 150 K
were performed using a phase-corrected version of FEFFIT, i.e. with theoretical phase
shifts taken from FEFF7. As fitting parameters for the EM model we used a shift of
energy origin AF and a constant amplitude factor SZ, whereas for the CD models

we used AFE and Debye temperature fp, and set SZ equal to the value derived from
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the EM fit (0.927). The data was fitted in the range between 1.7 and 5.2 A for the
16 most significant scattering paths which span first four shells. The fitted value for
Op was 327 + 9 K, within error bars of the value p = 315 K [22]. As Fig. 2.5 shows,
both methods yield XAFS in excellent agreement with experiment, though the EM

method is noticeably better.

2.5.2 (e

The second crystal considered in our study was a 147-atom spherical cluster of Ge
of the diamond space group. In the application of the EM method to such loose,
anisotropic structures like Ge, a single spring model is inadequate, and it is necessary
to include noncentral forces to account for bond bending interactions. Otherwise
there is no resistance to shear, and the projected VDOS exhibits an unphysical zero
frequency mode. The force field model used in our calculations included central in-
teractions out to the third neighbors (k1 = 120 N/m for the first neighbors, 4.0 N/m
for the second and —1.1 N/m for the third), and non-central bond-bending inter-
actions [44] with k¢ = 0.04 x ky fit to the experimental [3] VDOS. The values for
the central interaction force constants were based on results of Goldammer et al. [38]
and then adjusted by hand to fit experimental spectrum determined from neutron
scattering [3].

Fig. 2.6 shows the calculated total and projected VDOS for this model in com-
parison with experimental total VDOS. The MS 0]2 at 300 K calculated by the EM
method in comparison with results obtained from CD model (8p = 360 K [22]) and
several SS experimental values [2] are presented in Fig. 2.7 versus scattering paths
index listed in order of increasing path length as generated by FEFF7. For example,
path number 1 corresponds to first shell SS, 2 to second shell SS, 3 to 121 triangular
MS path, 4 to triangular 211 MS path, 5 to third shell SS, 6 to double scattering
from the first neighbor (o2 = 407}) etc. According to the EM calculations for the first
three paths, projected VDOS’s for paths 1 and 3 (see Fig. 2.6) have sharper dominant
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Figure 2.6: VDOS for a 633-atom cluster of Ge as calculated via the EM method:
a) for the first shell, b) for 121 triangular MS path ¢) total experimental spectrum

determined from neutron scattering [3] in comparison with theoretical total VDOS

plw).
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Figure 2.7: XAFS MS o2 for 147-atom cluster of Ge as calculated with the EM and
CD models at T = 300 K vs MS path index (see text). Two experimental values [2],

corresponding to the first and second shell SS, are given for comparison.

optical peaks at about 50 THz whereas the VDOS for path 2 has a more smeared out
spectrum and, thus, is probably better approximated with CD model. This explains
a smaller difference with CD model for path 2. The deficiency of the CD model for
Ge is illustrated by the poor fit of the theoretical x(R) to experimental XAFS spectra
(see Fig. 2.8).

Using the same fitting parameters as in the case of Cu above, the 300 K data
was fitted in R-space in the range between 2.0 and 5.2 A for the 20 most significant
scattering paths spanning the first five shells. The fitted value for 8p was 375 £16 K,

which again is within error bars from the value 360 K [22].

2.5.3  Zn-tetraimidazole

The study of the vibrational and dynamical properties of complex organic structures

such as zinc tetraimidazole is complicated by a large number of degrees of freedom and
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Figure 2.8: Magnitude of the phase corrected Fourier transform y(R) = FT[ky(k)]
for Ge at T = 300 K as extracted from experiment using the phase-corrected FEFFIT
code (solid line) and fitted using theoretical results with the DW factors calculated
via the CD (long dashes) and EM (short dashes) models.

a corresponding number of force constants. Imidazole is a crucial organic compound
occurring in nucleic acid bases and amino acids, e.g. is an important constituent
of the amino acid histidine. We chose zinc tetraimidazole since it was studied in
detail by Loeffen, Pettifer and Tomkinson [4] (LPT) and thus permits quantitative
comparisons. This macromolecule consists of four imidazole ring molecules (N2 C3Hy)
attached to a zinc atom forming a slightly distorted tetrahedral structure (Fig. 2.9).
The entire cluster has (s point symmetry group with zinc atom lying on a two-fold
axis and includes 37 atoms. To obtain all the parameters describing the force field of
such complex materials is rarely possible and, therefore it is crucial for XAFS analysis
to have a simplified prescription for calculating DW factors using a minimum set of
parameters.

As a basis for the EM calculations we started with the full harmonic force field
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Figure 2.9: Structure of the 37-atom zinc tetraimidazole macromolecule based on the

coordinates given by LPT [4].

deduced from inelastic neutron scattering of natural and deuterated zinc tetraimida-
zole compounds [4]. This force field is essentially a VFF with deformations described
in terms of combinations of internal coordinates such as bond stretches, angle bends
and torsions, and contains more than 60 distinct force constants, 40 of which corre-
spond to internal vibrations of the imidazole branches. As may be guessed from the
geometry of the structure, these internal modes as well as the “flapping” modes of the
branches, have little effect on the radial vibrations of the Zn-N bonds that dominate
o?. Thus, by simplifying VFF of the imidazole units, the number of the parameters
used in the calculations can be significantly reduced without causing large errors in
o?. Because torsional force constants are two orders of magnitude smaller than the
dominant stretches, we neglected their effects in our simulations altogether. Several

other negligibly small force constants were omitted as well. Our study consists of
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Table 2.3: Force constants used in our VFF models 1-2 for 0]2 calculation in zinc
tetraimidazole. Here N and C are pseudo-atoms (see text). All angle bends are

scaled by corresponding near-neighbor distances.

Symbol  Description Value (N/m)
ko 7n—N stretch 110
o N—Zn—N bend 37
ky N —( stretch 626
0,  C—N-Cbend 2590

three steps in building the model structure analogous to that of LPT. Starting with a
simple five-atom cluster, we then gradually add more degrees of freedom. At the first
two steps, averages of the several similar force constants were used rather then their
slightly different fitted values, which further reduced the number of the parameters.
We refer the reader to the paper by LPT for detailed definitions of the internal co-
ordinates (i.e. bonds and angles). The numerical implementation of our method was
successfully checked by comparing EM calculations of frequency modes with those
calculated analytically by applying a group theoretic analysis to a tetrahedral XYy,
model with three force constants: bond stretching, angle bending and bond coupling.
1) As a starting model (Fig. 2.10a) we considered a five-atom cluster consisting of
a zinc atom in the center surrounded by four pseudo-atoms N with masses equal to
the mass of the imidazole ring (68. u). The geometry of the cluster was kept the
same as in the ZnNy group of the original structure. Only two force constants were
used in the calculation: a bond-stretching k¢ (degeneracy 4) and an angle bending
6o (degeneracy 6) (see Table 2.3). The first parameter was set equal to the average
of the two Zn-N stretches in the full VFF of LPT, and the latter to the average of
the four N-Zn—N angle bends (taking into account degeneracy due to the symmetry).
The model yielded SS o? = 2.06 x 107° A? at 20 K, about 18% below the value
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Table 2.4: Force constants used in the VFF 3 for 0]2 calculation in zinc tetraimidazole.

All angle bends are scaled by corresponding near-neighbor distances.

Symbol Description Value (N/m)
kéA) Zn—N stretch 111
3 Zn—N stretch 108
« Zn—N/7Zn—N 27.4
¢ Zn—N/7Zn—N 3.77
Oo1 N—7n—N bend 46.1
fo2 N—7n—N bend 26.1
fos N—7n—N bend 40.9
fo4 N—7n—N bend 21.8
11 imid out — of — plane bend 9.0
12 imid out — of — plane bend 7.3
ki N, —Cj stretch 670
ko N, —C5 stretch 681
k13 C4=Cj5 stretch 561
kia N3—C, stretch 500
ks N3 =C, stretch 752
" N;—Cy/N;1—C;5 47.3
Yo Ny —C5/Cy=0Cs 45.0
Y3 C=4C5/N3—Cy 25.4
Y4 N;—Cy/N3=C, 81.1
04 Zn—N—C bend 10.9
019 Zn—N—C bend 14.8
Ca ring deformation 260
¢B ring deformation 250
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estimated from experimental XAFS data (2.5 £ 0.2) x 107> A2,
2) In the second, slightly bigger calculation, we included the ZnNy group and 8 pseudo-
atoms in place of the carbon atoms nearest to the nitrogens (see Fig. 2.10b). Four of
these pseudo-atoms (C’l) had masses equal to the sum M(C)+ M(N)+2M(H) ~ 28. u
and the other four (C’g) to 2- (M(C + M(H)) ~ 26. u. Four force constants were
used in the calculation (see Table 2.3): in addition to the 2 parameters of model 1)
we considered a stretch k; between the nitrogen and the nearest to it CN'Z equal to the
average of the two N-C stretches and an angle bending 6, (the result of the combining
two ring deformations and calculating coefficients at the corresponding angle bend
term). For the short Zn-N bond the resulting o7 = 2.43 x 107> A? at 20 K.
3) Finally, we included all atoms of the imidazole units except the hydrogens (see
Fig. 2.10¢) and used 23 distinct force constants in the VFF model: two Zn—-N bond-
stretches kéA) and k(()B), two Zn—N bond-coupling « and 3, six skeletal angle bends 6y;,
two out-of-plane angle bends of the imidazole branches ¢q;, five bond-stretches inside
the imidazole rings kq;, four imidazole bond-coupling ~; and two ring-deformation
constants (4 and £p (see Table 2.4). The result for the weaker (108 N/m) Zn-N
bond is ¢2(20K) = 2.64 x 10~> A2, in good agreement with the value obtained by
LPT (2.62 x 107> A?). For the stronger (111 N/m) bond the EM calculation yielded
2.63 x 107> A2, again in excellent agreement with the values calculated by LPT
(2.60 x 107 A?).

We also used these three models to calculate o7(20K) for four MS triangular paths
of the type Zn — N — N® — 7Zn where N and N are the nearest neighbors to
the scattering center (see Table 2.5). Note a significant effect of the N(V) — Zn — N(2)

bending force constants and geometry on the o? values. The wider the angle, the

greater resistance to its deformation, and hence these UJZ’S are inversely proportional
to ;. The values of 0]2 appear to be rather large since there is no explicit N-N
stretching involved.

These results (Table 2.6) show that, due to the local nature of o2, it is possible
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Figure 2.10: Reduced structural models used to approximate the VFF of zinc tetraim-

idazole with a) two and b) four effective force constants, as well as ¢) the 23-parameter

VIFF.
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Table 2.5: Values of MS 0]2 at 20 K calculated for four central MS paths of the type
Zn K N 4 N K Zn in zinc tetraimidazole depending on the number of the force
constants (v) used in the VFF model. Here j is the MS path index, R; its effective
length, ; the scattering angle N() — 7Zn — N in degrees, k() the force constant for
the bond Zn — N and 6 is the bending force constant for the corresponding ;. All

force constants are given in N/m.

. 2 -3 A2
ioRA) g IR e
v=2 4 23

19 357 107 3.17 4.10 3.94 108 111 40.9
20 359 108 3.17 471 4.95 111 111 26.1
21 3.62 111 3.16 4.05 3.86 108 111 46.1
22 3.63 112 3.15 447 4.87 108 108 21.8

Table 2.6: Values of SS of at 20 K for the weak Zn—N bond in zinc tetraimidazole
depending on the number of the force constants (v) used in the VFF model. Here
Ceop = 100(0{ —02,,)/02,, and € = 100(0] — 0} pp)/0fpr With 02, = (2.5+0.2) x 1077
A% and o2 pp = 2.62 x 1073 A2,

v o2 (1072 A%) e, (%) (%)
2 2.06 18 21
4 2.43 3 7
23 2.64 6 1
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Figure 2.11: Low frequency part of the first shell projected VDOS pgr(w) for the
23-parameter model of Zn-tetraimidazole (N = 21). The lines at 296, 277, 274, 228,
206, 205, 204, 184 and 174 cm™! indicate low frequency tetrahedral modes obtained

by LPT [4] for the entire 37-atom macromolecule.

to reduce dramatically the number of the parameters in the VFF even for very com-
plex structures while still attaining a 5-10% accuracy in the final results for o2 in
comparison with both more precise theory and experimental data. This accuracy is
satisfactory, since the error bars for the force constants themselves are usually of the
same order, e.g. about 15% for Zn-N bond-stretching constants in zine tetraimida-
zole, and the accuracy of the EM method, as implemented in our code, is fixed to be
about 5%.

The vibrational spectrum of the zinc tetraimidazole molecule can be subdivided
into high and low frequency regimes. The high frequency regime (> 500cm™') corre-
sponds to the modes caused by internal motion of the imidazole branches, while the
low frequency regime (< 500cm ™) consists of skeletal vibrational modes such as tetra-

hedral deformations, and in- and out-of-plane librations of the imidazole branches.



45

These low frequency modes yield almost 70% of the calculated o?. The low frequency
part of the projected VDOS for Zn—N bond (first shell) is presented in Fig. 2.11. The
peaks lying in the range between 170 ecm™! and 300 ecm™! correspond to the tetra-
hedral modes, whereas the lower part of the spectrum is due to the librations of the
imidazole branches. Due to the small size of the system the spectra is highly discrete.
For such heterogeneous materials like zinc tetraimidazole, a single parameter CD or

CE model is not accurate.

2.5.4  Semiempirical dynamical matriz calculation

We used AM1 (Austin model 1) [69] method in MNDQO94 code which is part of the
UniChem package to optimize geometry configuration of zinc tetraimidazole molecule
and to calculate cartesian dynamical matrix for this geometry. AM1 is a parametric
quantum mechanical molecular model based on the NDDO approximation [69]. The
resulting optimized geometry (see Table 2.7) is in a good agreement with the experi-
ment: bond lengths are within 4% of their experimental values and angles are within
3%. The dynamical matrix was then used in EM calculations to obtain values of o2

These values appear to be in good agreement with ones obtained using the VFI of

Loeffen et al. [4] (see Table 2.8).
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Table 2.7: Values of selected bonds and angles in zinc tetraimidazole obtained from
AMI1 geometry optimization in comparison with experimental values given by Loeffen

et al. [4]. All bonds are in units of A, angles are in degrees.

bonds and angles AM1  experiment

Zn — Ny 2.0626 1.9835
Zm — N7 2.0629 1.9832
Zm — Ny3 2.0635 1.9835
Zm — Nq7 2.0625 1.9832

Ny —7n — Ny 109.60 111.53
Ny —7n — Ny3 108.97 108.01
Ny —7n — Ny~ 109.88 106.66
N7 —7n — Ny3 109.79 106.66

Ny —Cs 1.3656 1.3256
Ng — Cg 1.4014 1.3838
Cy — Ny 1.3852 1.3366
Ny —Cs 1.3960 1.3710

Cs — Cg 1.4062 1.3485
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Table 2.8: Values of MS 0]2 (10_3 Az) at 20 K and 300 K calculated for several MS

paths in zinc tetraimidazole based on AMI1 dynamical matrix in comparison with

values obtained by Loeffen et al. [4].

path description UJZ (20K) UJZ (300K)
AMI1 Loeffen | AM1 Loeffen

experiment 2.54+0.2

Zn — Ny3 — 7m 2.51 2.62 3.92 4.29
Z/n — Ny —7m 2.51 2.62 3.93 4.29
Z/n — N7 —7n 2.51 2.60 3.92 4.25
Z/n — Ny7 — 7m 2.51 2.60 3.91 4.25
/n — Cg —7Zn 4.36 4.23 |10.25  8.82
/n —Cyy —7Zn 4.36 4.23 |10.24  8.82
/n —Cyy —7Zn 4.37 4.23 |10.29  8.82
/n — Cyy — 7Zn 4.36 4.23 |10.26  8.82
/n —C3 —7Zn 4.03 3.99 8.99 8.37
/n — Cg —7Zn 4.02 3.99 8.99 8.37
/n — Cyg —7Zn 4.03 4.01 9.01 8.57
/n — Cyg —7Zn 4.03 4.01 9.01 8.57
Z/n — Ny — Ny — Ny —7n 3.09 2.83 5.04 4.93
/n — Ny — Cs —7Zn 3.23 3.20 5.47 5.66
Z/n — Ny3 — Cy5 — 7Zm 3.24 3.15 5.48 5.46
/n —C3 — Ny — Ny —Z7n 3.17 3.40 5.83 6.34
Z/n — Cys — Nyg — Ny3 — Zn 3.17 3.12 5.84 5.72




Chapter 3

RECURSION METHOD

The traditional single frequency CE approximation does not differentiate between
acoustic and optical modes and can lead to poor agreement with experimental data.
Here we present an improvement to the traditional CE model by using the recursion,
or Lanczos, method (RM) [25,70] and a set of local force constants. Instead of
calculating the entire projected VDOS as in the EM approach, the RM calculations
are based on a double é-function representation and, thus, are much faster. We

discuss our results in comparison with the CE and EM calculations.

3.1 Formalism

The RM is a technique for determining local physical behavior by successive approx-
imations which involve more and more of a given system. We are interested in the
projected density p;(w), but it is more convenient to deal with the distribution with

respect to w? =z,

() = (ol — D)) = B, (3.1)

Here again (see Chap. 2) D, s(l,m) = ®,4(l,m)//M;M,, is 3N x 3N dynamical

matrix with @, ,,5 denoting the second derivatives of the potential energy V of the
lattice deformation with respect to the atomic displacements v, and u,,z taken in
the equilibrium configuration, and |@Q;) is the normalized initial displacement state
for MS path j defined in Eq. 2.10. If only the central interaction between the nearest
neighbors is taken into account, then V- = 1/23" ky,, (671, )? for bond stretches éry,, =
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(U — tp) - fx’lm and the matrix of the second derivatives can be written in the form

N
Bop(l,m) =Y kin RS, RE 61 — i B], R (3.2)

i=1
where k,,, is a bond-stretching force constant for nearest neighbors [ and m, N,, is a
number of the nearest neighbors of atom m, and fx’lam is the ath cartesian component

of the directing unit vector between atoms [ and m.

The RM yields a continued fraction representation of g;(x), i.e.

gile) = — ~Tm L (3.3)

s
T — dg —
by

r —dg — ...

T — a1 —
in which Imz — 07. The coefficients a,, and b,, determine a 3-term recursion relation

which defines new orthogonal basis states |n),

1) = (D = ap)ln) = buosln — 1),
0)=1Q)). |- 1) =0. (3.4)

One can picture these states roughly as “shell states” since their largest components
are typically on the nth shell of neighbors to the atoms in the path. If one truncates
the fraction after N tiers, the continued fraction can be unfolded as an [N/N + 1]
Padé approximate, Qn(x)/Pnt1(x), the polynomials in which may be generated by
recurrence relations similar to Eq. (3.4). Taking the imaginary part then yields an

N-point é-function representation,

piw) ~ Z w;0(w — :1;3/2), (3.5)

where w; and x; are respectively residues and poles of Qn(x)/Pny1(2). This approx-
imant yields exactly the leading 2N power moments m,, of the spectrum g;(x), and

also gives an N-point Gaussian quadrature formula for 0]2,
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N

h w; Bhal?
2Ty = — ' coth L 3.6
oi(T) 2”];1'}/2 co 5 (3.6)

Clearly, the result for a single tier is ¢g;(2) = 1/(1 — ao) which corresponds to the
traditional CE approximation with w}, = ag = (Q;|D|Q;) which is equal to the second
moment ms.

In the present study we limit the continued fraction to the second tier. Thus, the
vibrational spectrum is approximated with two é-functions centered at the effective
frequencies wy 5 = /71 ; with the corresponding weight factors w, = (a1—xq)/(x1—22)

and wy = (x1 — a1)/(x1 — x2), where

5 Qo + aq + \/(Clo — G1)2 + 4[)0 . (37)

T12 =

In this, case the lowest frequency represents an effective acoustic mode whereas the

highest one corresponds to an effective optical mode.

3.2 Calculations and results in Cu

The model structure used in the calculation is a 225-atom cluster (11 shells, Rpax =
8.47 A) of fcc Cu crystal without periodic boundary conditions. Following the model
of Rehr and Alben [24], only a single central interaction between the first nearest
neighbors with force constant k& = 27.9 N/m was taken into account. The MS o7 at
295 K calculated using the RM in comparison with results obtained from the EM
method and a single frequency CE model with wg based on the second moment of
the dynamical matrix are presented in Fig. 3.1 versus scattering paths index j listed
in order of increasing path length as generated by FEFF7 (also see Table 3.1). For
example, path number 1 corresponds to first shell single scattering (SS), 2 to second
shell SS, 3 to 111 triangular MS path, 4 to triangular 211 MS path, 5 to third shell
SS, 12 to double scattering from the first neighbor (o7, = 407) etc.
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Table 3.1: Values of MS o7 x 107° A? at 295 K for a 225-atom cluster of Cu as
calculated with a single force constant (k = 27.9 N/m) model using RM (o) and CE
(cdr) approximation vs MS path index j. Two experimental values [2] corresponding
to the first and second shell SS are given for comparison. Also, given are Finstein

frequencies wg, effective frequencies wy 5 (all in THz), and the corresponding weight

factors wy » (dimensionless).

: 2 2 2
] URM O-CE O-GXP CUE CUl CUQ wl w2

734 626 7.93 364 275 41.9 0.434 0.566

2 9.67 7.72 11.08 325 249 41.2 0.592 0.408
3 7.26 6.45 33.1 289 42.2 0.349 0.651
4 876 7.22 35.5 26.3 41.7 0.458 0.542
5 939 1.72 32.5 25.0 39.8 0.550 0.450

The 0]2 calculated via the RM appear to be within about 9% of the corresponding
EM values which are in a good agreement with experiment (2.7% for the 1st shell
and 4.4% for the 2nd), whereas the CE values are typically 15-27% off in comparison
with EM. These results indicate that the RM provides a much better agreement with
the EM method and experiment than the CE model for all MS paths.

Typically, the RM somewhat underestimates the % values for Cu due to insuffi-
cient weight at the lower part of the spectrum. In cases when VDOS contains low
frequency acoustic modes, in order to account for these modes it is sufficient to add a
factor of 9/8 to the weight of the lowest effective frequency. This factor is calculated
in such a way that it weights low frequency modes as they would be in the CD model.
For example, in case of Cu at 295 K this correction brings o7 and o3 up to 7.91 and

10.62 x 107 A2, in much closer agreement with EM method and experiment.
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Figure 3.1: MS XAFS o7 for Cu at 295 K as calculated with a single force constant
(k = 279 N/m) with RM, RM corrected with the 9/8 factor (RMc), EM and CE
methods vs MS path index. Two experimental values [2] corresponding to the first

and second shell SS are given for comparison.



Chapter 4

XANES AND XAFS CALCULATIONS IN
ORGANOMETALLIC SYSTEMS

Fitting values of 0% to experiment in organic and organometallic systems is usually
complicated because of a large number of fitting parameters and a small number of
independent points in these systems. Also, the traditional isotropic models, such as
the CD and CE models, do not work very well for such highly inhomogenious materials
as biological molecules. In this case, the EM method is a valuable alternative.

In the present chapter we consider XANES and XAFS calculations in the organo-
metallic systems tetramethylammonium tetrachloroferrate (II) and Pyrococcus Furi-
ous rubredoxin. XAFS DW factors for these compounds were calculated using the
EM method with force constants calculated ab initio for the first material and fitted

to experimental vibrational spectra for the second.

4.1 Ab initio calculation of the DW factors in tetrachloroferrate (II)

4.1.1  Force constant matrix for an XY, molecule

The XY, molecular model [37] consists of five atoms with the central atom X sur-
rounded by four tetrahedrally oriented atoms Y (see Fig. 2.10a for an example). All
compounds considered in this dissertation can be approximated with an XY, model.

Cartesian force constant matrix ® is the matrix of the second derivatives of the
potential energy of the lattice deformations with respect to atomic displacements in
cartesian coordinates. To better understand the nature of a molecular FF character-

ized by @, it is helpful to rewrite this matrix in terms of internal coordinates Sy such
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as bond lengths r;; and bond angles 0,;;, so that its matrix elements are comprised
of the local force constants. It is traditional [37] to define ten internal coordinates
for tetrahedral molecules of the type XY,. For example, in a molecule of tetrachlo-
roferrate (TCF) FeCl;? (see Fig. 4.3), these include four bond stretches between the
central Fe; atom and a Cl atom, Sy = 6ryy where ¢t = 2,...,5, and six Cl; — Fe; — Cl;
angle bends, where 7,5 = 2,...,5. Out of these six angle bends only five are in-
dependent, since the condition Eij 0:1; = 0 has to be satisfied. Thus we have nine
independent internal coordinates which correspond to the nine (3N — 6 with N = 5)
degrees of freedom.

We will define a 10x 15 transformation matrix B which transforms a 15-dimensional
cartesian displacement vector 552 (U1zs Uy, .- ., Us,) into a 10-dimensional vector of

the corresponding changes in the internal coordinates, 55,

55 =B 6€. (4.1)

Thus, the force constant matrix in terms of the internal coordinates ®;,, is related to

® by the matrix transformation

= (BH @B, (4.2)

where the resulting ®;,; is a symmetric 10 x 10 matrix. For example, if only the central
interaction between the nearest neighbors is taken into account, the cartesian force
constant matrix elements can be written as in Eq. 3.2. Thus, in this case the elements
of the B matrix consist of the directing cosines :I:fx’lam and the matrix elements of ®;,,
are simply the bond stretching force constants ki, (Table 4.1).

Similarly, potential energy arising due to changes in bond angles,

60ijk = Sti - U; + Stj - Uj + Sk - U, (4.3)

where



Table 4.1: Matrix B for an XY molecule.

1\

a1 z T2 Y2 Z T3 Y3 Z3 Ty Ya Z4 s Ys Z5
ro | BT, RY, R, -k, —R', —Ry, 0 0 0 0 0 0 0 0 0
rs | R, RY, Ri, 0 0 0 e, —RY, —Ri, 0 0 0 0 0 0
ra | R, RY, R:, 0 0 0 0 0 0 -k, —RY, —R, 0 0 0
rs | BT, RY. Ri. 0 0 0 0 0 0 0 0 0 —R, —RY, —Ri
Oa13 | sTy  sii s 512 512 519 593 513 513 0 0 0 0 0 0
Os14 | $3, sy S 539 Sy 539 0 0 0 534 Sy 534 0 0 0
Oa1s5 | s5, 531 S5 539 53 539 0 0 0 0 0 0 535 535 535
Os14 | s sy Sh 0 0 0 543 543 543 544 S 534 0 0 0
Oa15 | 51 s51 Sk 0 0 0 553 S33 553 0 0 0 S55 S35 555
Ous | S& S Sér 0 0 0 0 0 0 564 S84 564 565 S 565

Gg
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N

Rji COS eijk — R]‘k

T]‘Z' sin eijk

—

St =

, (1.4)

(T]‘Z’ — T]‘k COS (gwk)f%ﬂ —|— (T]‘k — T]‘Z' COS (gwk)lff]k

7. — 4.5
St] T]‘ﬂ“]‘k sin eijk ’ ( )
B R, cos 0;:1 — fx’z
Fg= kTR R (4.6)

Tk S11 eijk

[27], is equal to Vi, = 1/2 3 k1(80,5,)%. This leads to the force constant matrix

elements in the following form

OUE(1,m) =Y w155 iy b1t bums (4.7)

t

where the sum runs over all bond angles, index ¢ is equivalent to the corresponding
set of the three atomic indices {i, 7, k}, ki = kéjk, and 6y 1s equal to 1 if at least one
index from the set is equal to [ and to 0 otherwise. Therefore, in this case vector
components sj; are the matrix elements of B and the angle bending force constants
k¢ are those of ®;,; (Table 4.1).

Because six cartesian displacements and one internal coordinate are redundant, B
is singular and therefore, singular value decomposition [71] (SVD) technique has to be
adopted in order to find its inverse. In our study we developed a simple code B_REV
based on the subroutine SVDCMP [71] to calculate ®;,; for an XY type molecule via
Eq. 4.2. This code takes as matrices ® and B as an input and returns matrix ®,,; as

an output.

4.1.2  Geometry optimization, VDOS and o>

A model structure used in the ab initio DGauss calculation was a 5-atom high-spin
(multiplicity 5) anion of TCF (II), FeCl;?, which has a slightly distorted tetrahedral
symmetry. Two independent runs using different approaches in the SCF calculations,

one based on the LDA with VWNRSO0 form of the exchange-correlation functional and
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Table 4.2: Definitions and values of the internal coordinates S; used in the study: the
bond lengths (A) and the bond angles (deg). The values are given for the LDA and
GGA optimized structures.

t | S LDA  GGA
1 | Fe;,—Cl, 2305  2.379
2 | Feg—Cls 2.304  2.375
3 | Feg—Cly 2302 2371
4 | Fey—Cls 2.304  2.375
5 | Cly—Fe;—Cly 105.37 110.36
6 | Clu—Fe;—Cly 11878 111.91
7 | Cla—Fe;—Cls 10537 105.85
8 | Cls—Fe; —Cly 105.10 106.22
9 | Cls—Fe;—Cl; 117.85 112.11
10 | Cly—Fey—Cls  105.10 110.49

the other on the GGA with PW91 form, were performed on the structure. The re-
sulting values of the optimized bonds and angles are given in Table 4.2. The GGA
bonds appear to be about 0.07 A longer than the corresponding LDA bonds which is
a typical effect of the non-local corrections in transition metal systems of this type.
Both approximations give structural results in good agreement with experiment (see
Table 4.3). But since the LDA bond lengths for the anion are closer to their experi-
mental values in the molecule of tetramethylammonium TCF (II) [N(CHs)4]2[FeCly]
molecule [5], which is a focus of our XAFS analysis in the next section, we will use
the LDA results in our study.

We also performed a trial LDA calculation for a low-spin (multiplicity 3) state of
the FeCl;? anion. The resulting LDA optimized configuration had two Fe-Cl bonds
with lengths 2.2898 A, one bond with length 2.2872 A, and the shortest bond with



38

Table 4.3: Bond distances and angles in FeCl;* anion found in different studies and

different compounds (see [5] for references).

Salt Fe-Cl (A) Cl-Fe-Cl (deg)
[C5H5S,]5[FeCly] 2] 2.289(5) [1] 112
2] 2.335(5) [1] 116
(av) 2.313(4) [2] 106
2] 108
[C5H5S,]5[FeCly] 2] 2.31(1) [1] 112
2] 2.34(1) [1] 116
(av) 2.33(2) [2] 106
2] 108
{[Fe(n — C5H;)(CO),]SbCI Y [FeCly] | [2] 2.284(5) [1] 104.2(3)
2] 2.320(5) [1] 108.5(2)
(av) 2.302(18) [2] 107.2(2)
2] 115.0(2)
[N(CHs)4]5[FeCly] 2] 2.296(2) [1] 113.6(1)
[1] 2.290(2) [1] 110.9(1)
[1] 2.289(2) [2] 108.2(1)
(av) 2.292(2) [2] 108.0(1)
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Figure 4.1: Projected VDOS for three distinct triangular MS (a) and SS (b) paths in
FeCl72. The lines at 45.68, 78.23, 100.64, 109.89, 116.57, 245.34, 248.39, 281.77, and

284.02 cm ™! indicate the infrared vibrational modes calculated by DGauss.
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Table 4.4: Matrix elements of ®;,; in units of (102><mdynA/[St1]/[St2]) where [S;,] is

in A for bonds and in rad for angles.

t 1 2 3 4 3 6 7 8 9 10

119257 1290 7.61 1257 -4.42  -225 -3.29  3.79 3.85 2.54
2 11290 95.71 12,05 7.89 -2.88  3.72 3.06 -489 -1.81 291
3 7.61 12,06 96.25 12.66 234  -0.73 257 -3.43 294  -3.50
4 | 1257 7.88 12,67 95.82  3.58 3.52  -3.08 262 -1.99 -4.57
5 | -4.43 287 236 358 2569 -241 -2.73  -6.18 -2.25 -12.64
6 |-2.25 3.71 -0.73 352 -245 1578 -0.92 -0.15 -10.06 -1.91
71 -3.27 3.07 256 -3.08 -2.66 -0.97 23.26 -14.79 0.28  -5.27
8 3.7  -4.86 -3.42 263 -6.27 -0.18 -14.84 26.17 -0.82 -4.05
9 3.85 -1.83 294 -198 -2.24 -10.06 0.27 -0.88 17.51 -3.71
10| 259 290 -3.52 -4.59 -1259 -1.88 -5.18 -4.16 -3.78 27.17

2.2169 A. This result is consistent with the discussion of Lauher and Ibers [5] that
bond lengths in this type of systems tend to increase for a higher spin state. A large
distortion in the forth bond can be attributed to a spontaneous symmetry breaking
due to Jahn-Teller effect [72,73].

Vibrational spectrum and cartesian 15 x 15 force constant matrix were then calcu-
lated for the LDA optimized structure. Since there are only nine degrees of freedom
in a H-atom nonplanar molecule, there exist only nine distinct vibrational modes.
Based on the calculated force constant matrix, projected VDOS for selected SS and
MS paths were obtained via the EM method, yielding vibrational modes in excellent
agreement with those found by DGauss (Fig. 4.1a-b). The peaks in the spectra cal-
culated by the EM method are in perfect agreement with the corresponding DGauss
modes.

Matrix ®,,; calculated using the matrix transformation (4.2) with B based on the



61

0.25 T T I B '

0.2 -
124 —-
0.15 .
= 01k i
0.05 | .

/A\

/i

0 | . -"

0 30 100 150 400

W,

Figure 4.2: Projected VDOS for two SS paths, Fe; — Cly and Fe; — Cls, and two MS
paths, Fe; — Cl; —Cl; and Fe; — Cly —Cly, calculated using the EM method and the
10-parameter VFF model.

internal coordinates Sy described above (Table 4.2) is given in Table 4.4. As one can
see there is a significant coupling between different internal modes, e.g. 5154 and
SS9 among others, which is important in DW factors for non-linear MS paths but
has a much smaller effect for SS Fe—Cl paths (see Table 4.5 and Fig. 4.2). The values
of 0]2 calculated at 20 and 300 K via the EM method using entire force constant
matrix are presented in Table 4.5 in comparison with those obtained using the VFF
model (see Sec. 2.3) with only 10 most important diagonal force constants, i.e. four
bond stretches and six angle bends. The average EM o for the first shell at 10 K is
equal to 2.925 x 1073 A? which is only 10.1% higher than the experimental value of
2.656 x 1072 A2 [74] and is within our error bars of about 10-15%. Projected VDOS
for four selected SS and MS paths based on the 10-parameter VFF model are shown
in Fig. 4.2. The difference between these spectra and those shown in Fig. 4.1a—b

illustrate the effect of non-diagonal force constants on vibrational spectra.
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Table 4.5: SS and MS 0]2 for selected paths calculated via the EM method at two
temperatures using the entire force constant matrix ® in comparison with calculations
based on the 10-parameter VFF model. Here scattering path indices j are equal to

the corresponding internal coordinate indices t.

20 K 300 K
J  path description CI) VI ® VIT
1 Feg—Cly 297 2.84 | 540 5.09
2 Fe;—Clj 2,92 2.80 5.25 4.94
3 Fe;—Cly 2.89 2.79 524  4.92
4 Fey—Cl; 2,92 2.79 5.26  4.93
5 Fe;—Cly—Cly | 4.59 4.97 | 12.53 14.59
6 Feg—Cl,—Cly |[5.13 5.06 | 17.68 15.56
7 Fe;—Cly,—Cls | 4.83 5.02 | 15.24 15.16
8 Fe;—Cl3—Cly |4.66 4.93 | 13.66 14.43
9 Fe;—Cl3—Cly |5.04 5.01 | 16.92 15.12
10 Fey—Cly—Cls | 4.52 4.90 | 11.94 14.18

The bond stretching force constants from the GGA calculations (i.e. 75.70, 78.05,
76.40, and 76.06 N/m) are approximately 20% weaker that those from the LDA calcu-

lations. Also, the GGA vibrational modes are 5-30 cm ™! lower. These discrepancies

are largely due to the 3% difference between the GGA and LDA bond lengths.

4.2 XANES and XAFS analysis of tetramethylammonium tetrachloro-
ferrate (II)

Theoretical calculations of K-edge XANES spectra in tetramethylammonium TCF
(IT) were done using the FEFF8X code. FEFF8X calculates EXAFS and XANES

using real space multiple scattering approach and allows self-consist calculation of
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Figure 4.3: Structure of the 39-atom molecule of tetramethylammonium TCF (II),
[N(CHs)4]2[FeCly], based on the coordinates given by Lauher and Ibers [5].
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the potentials [20]. However, the self-consistent calculation did not produce adequate
charge transfer for this material and was not used in the final calculations. Instead
we used overlapped atomic potentials with ionicity 0.5 on the central Fe atom. In the
course of the study we found that this slight ionization provides a better background
to(E) which is more peaked at the edge. Also, due to the low symmetry (slightly
distorted tetrahedral for the first shell and overall orthorhombic space group DJ%),
the spherically symmetric atomic potentials might be insufficient .

The exchange correlation models used here were Hedin-Lundqvist with constant
imaginary part for y calculation and ground state with constants imaginary part for
to [75]. The calculations were done for one entire molecule of tetramethylammonium
TCF (II) containing 39 atoms with atomic coordinates as given by Lauher and Ibers
[5] and the distance to the furthest atom equal to 6.9 A. The resulting XANES
spectrum is shown in Fig. 4.4 and the fine structure in Fig. 4.5 in comparison with
experimental data [74]. An overall good agreement was achieved, although the white-
line peak is not sufficiently high. The deficiency seems to be caused mostly by po
calculation.

Projected electron densities of states (DOS) from the FEFF8X runs were compared
to the corresponding DOS obtained from UniChem calculations for the same molecule
(Fig. 4.6-4.8). Also, p-DOS was compared to x since there is a direct correspondence
between a K-edge fine structure and p-DOS (see Fig. 4.7). These comparisons pro-
vide a good test of accuracy of the calculations. The FEFF calculated DOS are in
good agreement with DFT calculations up to a few eV above the Fermi level. The
discrepancy for higher energies is due to insufficiencies in a basis set used in the DFT
calculations by UniChem. Note that the FEFF d-DOS gives a crystal field splitting
around 5 eV below the Fermi level on e- (double degenerate) and t-orbitals (triple

degenerate), thus there should be a 2:3 ratio in the heights of the peaks which is well

! This could also be the reason why the charge transfers in the self-consistent runs were not very

good.
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Figure 4.4: K-edge XANES spectra u(F£) and the corresponding backgrounds po(F)
for tetramethylammonium TCF (II) calculated with FEFF8X (solid) in comparison

with experimental data (dashes).
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Figure 4.5: K-edge XAFS y(k) for tetramethylammonium TCF (II) calculated with

FEFF8X (solid) in comparison with experimental data (dashes).
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Figure 4.6: s-DOS for the central Fet? atom in tetramethylammonium TCF (II) as

calculated with FEFF8X (solid line) in comparison with s-DOS calculated by UniChem

(dashes).
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Figure 4.7: p-DOS for the central Fet? atom (solid line) and (k) (long dashes)
for tetramethylammonium TCF (II) as calculated with FEFF8X in comparison with

p-DOS calculated by UniChem (short dashes).
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Figure 4.8: d-DOS for the central Fet? atom in tetramethylammonium TCF (II) as
calculated with FEFF8X (solid line) in comparison with d-DOS calculated by UniChem
(dashes).

reproduced in Fig. 4.8.

Fourier transforms of the fitted theoretical (FEFF8X) and experimental XAFS
spectra for the first shell (Fe—Cl) of tetramethylammonium TCF (II) at room temper-
ature are in very good agreement over the entire fit range, R = [1.9,3.5] A(Fig. 4.9).
The values of the fitting parameters found by FEFFIT are S5 = 0.94(3), Ey = —2.3(6)
eV, and ér = 0.052(5) A with a strong correlation between Ey and &7 (0.87). This
test provides another proof that our ab initio DW factors for the first shell are very

close to their experimental values.

4.3 XANES and XAFS analysis of Pyrococcus Furious Rubredoxin

Rubredoxins are relatively low-molecular-weight proteins that contain a single iron
atom tetrahedrally coordinated by four cysteinyl sulfur atoms. Two forms of Pyro-

coccus Furious rubredoxin, oxidized (Fet™) and reduced (Fet?), were considered in
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k*x(R)
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Figure 4.9: Magnitude of the phase corrected Fourier transform y(R) = FT[k?y (k)]
for the first shell in tetramethylammonium TCF (II) at T = 300 K as extracted from
the experiment (solid line), and as fitted using FEFF8X theoretical results with DW

factors calculated via the EM method (dashes).

the XANES study. Both of them have a slightly distorted tetrahedral symmetry in
the first coordination shell of the iron atoms. The average Fe-S interatomic distances
are 2.289 A in the oxidized form and 2.330 A in reduced.

K-edge XANES spectra for the two rubredoxins were calculated using FEFF8X
with self-consistent muffin-tin (SCMT) potentials and their automatic overlap. For
exchange correlation potentials we used Hedin-Lundqvist form for the y calculation
and ground state with imaginary part for the pg. The clusters for both materials
consisted of one 25-atom molecule of Pyrococcus Furious rubredoxin with R,,.. equal
to 5.659 A in the oxidized form and 5.707 A in reduced. The resulting XANES spectra
are shown in Fig. 4.12 for the oxidized form and in Fig. 4.13 for reduced. As one
can see, experimental features were reproduced fairly well in both cases. Also, above

7180 eV theoretical spectrum of oxidized rubredoxin exhibits a relative shift to the
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Figure 4.10: Atomic structure of a molecule of oxidized Pyrococcus Furious Rubre-

doxin.

right by about 5 eV relatively to the spectrum of its reduced form. This effect is
consistent with the corresponding shift in the experimental spectra (see Fig. 4.13).
Projected electron p-DOS for the two rubredoxins were compared to the corre-
sponding XAFS (see Fig. 4.14). There is an apparent correlation of peaks in p-DOS
and .
Force constants for the bonds and angles involving Fe, S, and C atoms which we
used in the 0% calculations were fitted to experimental vibrational spectra for oxidized

rubredoxin and its analogs by Czernuszewicz et al. [43] whereas the remaining force
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Figure 4.11: Fe K-edge XANES spectra for oxidized (Fe™®) rubredoxin calculated

with FEFF8X in comparison with experimental data.
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Figure 4.12: Fe K-edge XANES spectra for reduced (Fe™) rubredoxin calculated

with FEFF8X in comparison with experimental data.
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Figure 4.13: Comparison of XANES spectra pu(F) calculated with FEFF8X and ex-

perimental data for both forms of rubredoxin.
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Figure 4.14
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Table 4.6: Force constants used for 0]2 calculation in oxidized rubredoxin. Bond

stretching force constants are in units of mdyn/A and bond bending are in

mdynA /rad?.

Description Value
Fe—S stretch 1.34
C—S stretch 3.05
C—C stretch 4.80
C—N stretch 8.39
S—Fe—S bend 0.35
Fe—S—C bend 0.25
S—C—C bend 0.82
N—-C—C bend 1.12
Fe—S\Fe—S coupling  0.07

constants (i.e. C-N stretch and N-C—C bend) were calculated using the UFF model
[66] (see Section 2.4). Resulting o’s for selected paths are presented in Tab. 4.7. The
average EM o2 for the first shell at 10 K is equal 2.475 x 10~ A% which is 9.7% lower
than its experimental value of 2.74(10) x 103 A2 [76].

Fourier transforms of the fitted theoretical (FEFF8X) and experimental XAFS
spectra for the first 40 most significant paths (with maximum Reg = 4.702 A) at
10 K are in very good agreement for distances of up to 4.5 A in R-space (Fig. 4.15).
We were able to reproduce the spectral features in 3.5-4.5 A range by going beyond
the first shell fit. This agreement with experiment also shows that our EM DW
factors for MS work very well for this material. The values of fitting parameters
found by FEFFIT are S2 = 0.95(4), Eo = —7.3(9) eV, and ér = 0.008(6) A with a

strong correlation between Ey and ér (0.88).
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Table 4.7: SS and MS 0]2 for selected paths calculated via the EM method at two

temperatures 10 and 300 K.

J  path description  R; o}(10K) o7(300K)

Fe; — 5, 2.2528 2.48 3.94
2 Fey—53 2.2538 2.48 3.94
3 Feg—54 2.3104 2.47 3.93
4 Fe;—S; 2.3300 2.47 3.93
5 Fey—Cq 3.2260 7.52 31.94
6 Feq—0Cr 3.2402 7.51 31.95
9  Fe, —Csg—5, 3.6756 4.22 11.58
10 Fe; — Cr—S5 3.6893 4.22 11.59
14 Fe; — N40 3.7331 6.66 26.56
15 Fe;—S4—953 4.0629 4.06 10.83
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k*x(R)
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Figure 4.15: Magnitude of the phase corrected Fourier transform y(R) = FT[k?y (k)]
for oxidized rubredoxin at T = 10 K as extracted from the experiment (solid line),

and fitted using FEFF8X theoretical results with DW factors calculated via the EM
method (dashes).



Chapter 5

ANHARMONIC AND SPHERICAL WAVE
CORRECTIONS

Here we will show how effects due to anharmonic corrections to the potential
energy may be approximated by using the results from Refs. [21] and [7]. Sample
case of Cu is considered. We will also show how to approximate effects arising from

spherical wave corrections based on the values of o2.

5.1 Cumulant expansion

In general, anharmonicity leads to interactions between the various modes, and gives
a contribution to O'JZ(T) that increases with temperature. Detailed discussions on this
topic can be found in the literature [7,17,21,31], here we will only briefly outline
the main formalism. Due to anharmonic effects, the Gaussian approximation for DW
factor Eq. (1.1) is not precisely valid, and the general cumulant expansion [17] has to

be considered instead, that is

12k(r;— - (QZk)n n _ :
(ei26(rs=Ry)y = eXPZ ~ 0‘](, ) = e Wities (5.1)
n=0

(m)

where o denotes the nth cumulant average,

o= - R)), (5.2)
o = (= Ry)Y) = oX(T), (5.3)
o = (= Ry)), (5.4)
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o = (= Ry)Y) =3}V (5:5)

etc. Thus, neglecting small contributions from the mean free path, the general DW
factor contains only even moments W; = 2 O'JZICQ —2/3 0;4) +..., whereas odd moments
contribute to the XAFS phase ®; = de;l) —4/3 0;3)k3 + .... We will adopt the
prescription originally derived for the anharmonic CE model, [7,21] as characterized
by an effective cubic anharmonic pair potential V(z) = 1/2 kx? + ks2z® which includes
the effects of neighboring springs (here @ = r — R). In this prescription all the
cumulants can be expressed simply as a function of the second cumulant O'JZ(T) and

the ratio of the cubic anharmonicity parameter ks to the effective spring constant k,

0;1)0]2(T)_ 3 U?(T) ' '

Here, generalized for the MS case, o3, = h(8mwp(R;))™"

to a}(T), wi(R;) = (Q;(0)|D]Q;(0)), oV = —=30*(T)ks/k, and k = dm;wp(R;).

Thus only o3(T), e.g. from Eq. (2.5) or from the CE model ¢3(T') = o§; coth(@%/T),
(1) (3)

J J

relation to thermal expansion coefficient, « = (1/R)dR(T')/dT [21],

is zero-point contribution

and kz/k are needed to obtain o>’ and o}”’. The latter can be obtained using its

ks . —2k2(1 — 2)3 ) |
% T 30+ oI (1) (e @ DT (5.7)

where z = exp (—6%,/T).

Furthermore, because of thermal expansion, one expects the microscopic force
constants, which depend on the bond lengths, and hence, the phonon frequencies,
to vary with temperature and pressure. To estimate the effect at high temperatures
(T' > 0p), one may approximate o7 ~ kgT [ dwpj(w)/w? = kgT/w?. This yields an

additional linear anharmonic temperature dependence,

oc}(T) — oXT)(1+CT). (5.8)

J
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Table 5.1: Third cumulants for the first nearest neighbor in Cu calculated using
thermal expansion coefficient « [7] for different temperatures 7T'.

T (K) Q (10_5 K_l) U%instein (A2) 0-3 (10_4A3) 0-3 (10_4A3)

erp

77 0.59 0.00290 0.138 -
100 0.80 0.00311 0.175 -
295 1.65 0.00626 1.56 1.3

Here the coefficient €' ~ —2/wdw/dT = 6a~ is linearly proportional to the linear
thermal expansion coefficient o = (3V)™19V /T and the Gruneisen parameter v =
—d(In@)/d(In V). Quartic and higher cubic (~ k3) terms in the lattice Hamiltonian
also lead to corrections of the same linear in 7' form as in Eq. (5.8). For Cu C =~
0.05/60p. [17]

Equations 5.6-5.7 were used to calculate ¢ for the first shell in Cu crystal. Here
CE model with wg = 36.4 THz (see Sec. 3.2) was used to obtain * values. Results

are presented in Tab. 5.1.

5.2 Spherical wave corrections

The effect of spherical wave corrections can be estimated using the spherical wave
approximation. [77] In this approximation the effective scattering amplitude has an
additional phase factor for each [, i.e. t; — ; exp (¢L?/pR), where ¢; = exp (i6;) sin (&)
is the dimensionless scattering matrix in terms of partial-wave phase shifts 6; and
L* = (I+1). Consequently there is an additional I-dependent DW factor for each I,

t1 — tyexp (—W)) where

2 \? 20212
9,2 2 N R
W, = 2p°oy, [(1 — o 2) — 1] o —— (5.9)

where p = \/k? + k% 4 i/X. Note that these contributions are independent of energy
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and are usually small since ¢; is negligible for [ > pR. They tend to reduce the DW
factor. The leading correction in Eq. (5.9) is often sufficient since [p| > kg, where
krp = O(lA‘l). There are also small corrections to the XAFS phase from the overall
1/(pR)* and exp (—2R/\) factors, i.e. W — 2p*c} — dipos/R.



Chapter 6

CONCLUSIONS

I do not know what I may appear to the world; but to myself I seem to have been
only like a boy playing on the sea-shore, and diverting myself in now and then finding
a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay

all undiscovered before me.
Issac Newton, (1642-1727)

Despite the wide use and popularity of XAFS analysis, conventional methods for
calculation of XAFS DW factors are still very limited in their application: some
of them are restricted to only SS cases [9,19], others, such as CD and CE models,
are isotropic and can be very inaccurate for inhomogeneous materials. Although
our results indicate that the CD model works fairly well for isotropic materials like
crystalline Cu, where the error for all paths at high temperatures does not exceed 25%
and is half of that at low temperatures, it works poorly for the first shell in crystalline
Ge, giving an error of about 50% at 300 K (Fig. 2.7). The importance of taking into
account distinct features of the local environment around the scattering center, such
as details of the interaction field, has been demonstrated in this dissertation for a
number of cases.

In the present work we attempted to improve the existing methods and to develop
a new general formalism for XAFS DW factor calculations. Two possible improve-
ments include the EM method and the recursion method. These methods allow an
efficient and general approach to calculation of the XAFS DW factors for MS as well
as SS cases in terms of a few local force constants.

Our results illustrate a number of advantages of the EM method in comparison
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with traditional isotropic models, especially for heterogeneous materials which are
those of the greatest interest in XAFS studies. Due to the local nature of the DW
factors, the EM method can be successfully applied to small and irregular structures
by focusing on the vicinity of the scattering atom. It requires no symmetry specifica-
tion or boundary conditions. Because no secular equations or matrix diagonalizations
are involved and the scaling of the numerical procedure is linear with system size,
the method is efficient even for clusters of more than several hundred atoms. In that
case solving the “exact” eigenvalue problem is very time-consuming, since it scales as
(3N)? for systems with low symmetry where N is the number of atoms in the cluster.
The real time approach to calculations of UJZ’S using Eq. (2.7) shows that, in principle,
it is not necessary to determine the projected VDOS as an intermediate step which
further simplifies the numerical computation. We have not used this approach in the
present work for it is valuable to see the VDOS as well. Also, values of O'JZ(T) for
any temperature T' can be calculated once p;(w) is obtained. In fact, in many cases
analysis of vibrational spectra may provide additional information for refining the dy-
namical model used in the EM method. As mentioned earlier, our study shows that
isotropic models can be inaccurate not only for such highly inhomogeneous materials
as organic and organometallic complexes but even for some loose packed monoatomic
crystals like Ge. Our results also illustrate the importance of correlations in mod-

eling vibrational properties of materials. The correlations decay with distance, and

indicate how o converges to ) u?.

The EM method can be very valuable when applied to EXAFS analysis in biologi-
cal systems. One of its most important features is that given a few FF parameters one
can calculate XAFS DW factors from first principles even when experimental data
for wp or wg 1s not available or hard to extract, which is often the case for biological
complexes. Having a general and efficient method for the DW factor calculations is

also important because of the difficulties in fitting these factors to experiment. The

typical number of independent points in EXAFS measurement [12,33] for a biological
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compound is rather small, about 10-15. This is because the data is reliable only in a
narrow band in k-space (because of large scattering from the low-weight atoms) and
in a narrow range of about 1.5-5.0 A in R-space (because of large disorder). Thus,
there is a strong limitation on the number of fitting parameters for such materials.
Since for highly disordered systems there is usually a need to fit many structural
parameters, it is very helpful to have a reliable theoretical method for DW factors
calculation in such cases. For the same reason, it is also desirable to have a gen-
eral, efficient, and reliable way of obtaining VFF model parameters ab initio, and
we are currently exploring this possibility. DFT code DGauss has been successfully
tested for this purpose in application to an anion of tetrachloroferrate (II), allowing
us to calculate DW factors from first principles. These DW factors were then used in
XAFS analysis of tetramethylammonium tetrachloroferrate (II). The resulting theo-
retical Fourier transform of the spectrum is in very good agreement with experiment,
and the ab initio o value for the first shell appear to be within the error bars of the
experimental value. Although ab initio calculations are definitely appealing, they are
also very time consuming. Another option for a source of force constants would be
to use semiempirical FF parameters. In Sec. 2.4, we provided a discussion on the
availability and transferability of FF parameters in application to both crystalline
and disordered materials. We also calculated and successfully applied semiempirical
SS and MS DW factors in XAFS analysis of oxidized Pyrococcus Furious rubredoxin.
In conclusion to our development of the MS EM formalism, we can say that the ex-
cellent agreement of theoretical and experimental spectra in R-space for all materials
tested, both crystalline and biological, shows that the EM DW factors work very well
for S5 as well as MS paths. These are novel results which meet the goals set in the
beginning of our work.

In this dissertation we also introduced a next step improvement to the traditional
CE model which is applicable to both MS and SS cases, i.e. the recursion method. The

RM is based on a two-point é-function approximation of the projected VDOS obtained
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from a few local force constants and takes into account both effective optical and
acoustic modes. Although the RM yields accuracy comparable to the EM method,
it requires less computation time and can be easily used for ionic crystals, in which
EM approach can be unstable unless proper boundary conditions are applied.

Our study also shows that the largest errors of isotropic models typically corre-
spond to the first few most significant paths. Therefore, for some cases it might be
reasonable to use the RM or the EM method only for these most significant paths
while adopting the isotropic models for the rest. This could save a significant amount
of computation time without sacrificing much accuracy. Both presented methods are
coded in FORTRAN 77 and are compatible with the FEFF program.

Although a large amount of research on the XAFS DW factor calculations has
been done in this dissertation, there are still many remaining issues to resolve and

ideas to investigate. Future extensions to this work might include:

e Incorporation of the SIGEM subroutine into FEFFIT to test our prescription for

direct fitting of the FF parameters to XAFS spectra.

e Inclusion of higher (third, forth, ete.) tiers in the RM. These corrections could
improve the method in application to materials with highly inhomogeneous

structure and wide vibrational bends.

e Continuation of work on ab initio FF calculations. Ideally, it would be nice to

have a subroutine within the FEFF code to do the job.

e Solving the exact problem, i.e. in terms of eigenvalues and eigenfunctions
(Eq. 2.9), and comparing its results to the EM method. This might be a good

alternative method for very small atomic clusters (N < 20).
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Appendix A

COMPUTER PROGRAMS SIGEM AND SIGRM

A.1 Program structure

Computer programs SIGEM and SIGRM calculate values of O'JZ(T) for SS and MS paths
at a given temperature T' using the EM method (Chap. 2) and RM (Chap. 3) ac-
cordingly. These programs are coded in FORTRAN 77 and implemented as FEFF
subroutines parallel to the already existing SIGMS subroutine which calculates O'JZ(T)
via the CD model. A new keyword, idwopt, was added to DEBYE card in the feff.inp
file in order to incorporate these new options:

DEBYE temp thetad [idwopt]
This keyword is optional in a sense that if idwopt is omitted, i.e. DEBYE card is in
its old format, then the CD method will be used in the calculation. It allows one to
choose a method for the DW factor calculations in the FEFF run: CD if idwopt=0,
EM if idwopt=1, or RM if idwopt=2. Here temp is temperature 7" in degrees of
Kelvin at which DW factors will be calculated and thetad is Debye temperature for
the given material (these two keywords are exactly the same as in the old DEBYE card).
If idwopt is negative or if DEBYE card is omitted, DW factors will not be calculated
and all U?(T)’s will be set to 0. If idwopt is equal to 1 or 2, then an additional input
file, spring. inp, containing force field description is required. Figure A.1 shows an
example of the feff.inp file with the new DEBYE card.

The implementation scheme is following. If DEBYE card with idwopt equal to
1 or 2 is read, FEFF calls one of the subroutines, SIGEM or SIGRM, as specified by

the keyword. Then SIGEM (SIGRM) calls subroutine DWRDIN which reads the list of
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TITLE 13-atom model of zinc tetraimidazole
CONTROL 111111
PRINT 500000
DEBYE 300. 0. 2
POTENTIALS
* ipot z 1label
0 30 Zn 3 3

0.000000 0.000000 0.000000 O
1.568800 -1.502400 2.056700 2
1.400100 -1.165700 0.784400 1
2.329100 -1.907500 0.076100 2
-2.185200 1.371100 1.432900 2
-0.889900 1.103100 1.387200 1
-0.317600 1.778000 2.445200 2
-1.558800 -1.502400 -2.056700 2
-1.400100 -1.165700 -0.784400 1
-2.329100 -1.907500 -0.076100 2
2.185200 1.371100 -1.432900 2
0.889900 1.103100 -1.387200 1
0.317600 1.778000 -2.445200 2
END

Figure A.1: A sample feff.inp file for use in a FEFF 8X run with EM option for

DW factor calculation.
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FEFF

|

SIGEM
(SIGRM)

— ) e

calculates 6°

DWRDIN RDSPR

reads coordinates and reads spring.inp and
potentials from feff.inp builds dynamical matrix

Figure A.2: Implementation scheme.

atomic coordinates and potentials from the feff.inp file. After that RDSPR reads
the spring.inp file, searches for all similar bonds and angles, creates complete lists
of all bond stretches and angle bends, and then, based on the force field and geometry
of the structure, calculates cartesian force constant matrix as a sum of ®*" (3.2) and
¢"9 (4.7) and scales it with atomic masses to have the dynamical matrix. It also
uses another new subroutine SANG to calculate vectors §;; based on Eq. 4.4. The
dynamical matrix is then passed to the corresponding main subroutine, i.e. SIGEM
for the EM method or SiIGRM for the RM, and saved there to be accessed for 0]2

calculation for each scattering path in the list.

A.2 Input file spring.inp

The new additional input file spring.inp for a FEFF run with the new DW factor

options has to be created by the user. This file has the same user-friendly format
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* 13-atom model of zinc tetraimidazole

* res wmax dosfit acut
VDOS 0.02 1 1.2 3
PRINT 5
STRETCHES

* 1 j k_ij dR_ij (4
0 2 110. 2.
1 2 626. 5.
ANGLES
* 1 j k ktheta dtheta (%)
2 0 5 37. 10.
1 2 3 2590. 10.

Figure A.3: A sample spring. inp file for 13-atom model of zinc tetraimidazole. The

corresponding feff.inp is shown in Fig. A.1.

as the feff.inp file (e.g. the comment lines begin with an asterisk (*), empty lines
are ignored, the order in which the cards are used is arbitrary, ete.). A sample
spring.inp file is shown in Fig. A.3. Detailed description of the new cards used in
the spring.inp file follows below.

VDOS res wmax dosfit [acut]

This card is needed only for the EM runs and is optional, i.e. if it is omitted,
the default values are used. The keywords in the VDOS card define the integration
parameters used in the VDOS calculation. Here res is the VDOS spectral resolution
width (default res = 0.05, i.e. 5% of the bandwidth). The smaller this number the
more fine structure is present in the spectrum and the longer the computation time.
Finer resolution is usually helpful for mode analysis in small molecules. The next
keyword, wmax is a multiplication factor used to increase (decrease) the maximum

frequency to which VDOS is calculated by wmax times (default wmax=1). Keyword
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dosfit is a real positive number governing how much of the low frequency part of
the VDOS is to be fitted to Debye like behavior, A - w?. If it is equal to 0 then no
fitting will be applied. The higher the number the more of VDOS will be fitted. The
default value is dosfit = 1 (about 10% of the total width). This parameter is useful
for elimination of low frequency “noise” and zero-frequency modes. Finally, acut is
the time integration cutoff parameter. It rarely needs to be changed (usually in cases
of very small open molecular structures). The higher this number the longer the
computation time. The acut keyword is optional and if omitted the default value,

acut=3, is used. The entire VDOS card is ignored by sigrm.

* res wmax dosfit

VDOS 0.02 1 1.2

PRINT [iprdos]

The use of the PRINT card is different in SIGEM and SIGRM runs. If DW factors are
calculated using the EM method and this card is present, then prdenNNNN.dat files
containing projected VDOS for selected number of scattering paths will be printed
out. Here iprdos is the number of paths from the paths list for which (and only
which) these files will be written. If iprdos=0 or if the PRINT card is omitted, no
VDOS files will be printed out. If iprdos=n, there will be n prdenNNNN.dat files
created for the first n paths in the list.

If DW factors are calculated using the RM and the PRINT card is present then the
file s2_rm1.dat containing first tier results will be printed out. The keyword iprdos

is ignored in this case.
PRINT b5

STRETCHES
i j  kij dR_1ij
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This card is absolutely required for both, the EM and RM, runs and is followed by
the list of bond stretching force constants to be used in the calculation. Here 2 and j
are atomic indices (just like in the geom.dat file, e.g. the absorbing atom has index
0), and k_ij is a single central force constant characterizing the interaction between
atoms i and j in units of 102 xmdyn/A, or N/m. One should include as many distinct
bonds in the list as possible and then the code will search for the similar ones and
assign to them the same force constants. The last parameter in the row, dR_ij, is
tolerance in the bond length when searching for similar bonds and is measured in
percentage points. For example, it dR_1j=5 then all bonds between two atoms with
the same potentials as ¢ and j and with the bond length being within 5% of R;; will

be assigned the same stretching force constant k_1ij.

STRETCHES
* i j k_ij dR_ij (%)
0 2 110. 2.
1 2 626. 5.
ANGLES

1] k  ktheta  dtheta
This card is similar to the STRETCHES but is optional in most cases and allows one to
include 0;;; angle bending force constants, kéjk, in the calculation. The force constants
are in units of 10> xmdynA /rad?. Here dtheta is tolerance in the angle value when
searching for similar angles. Sometimes it is useful to include this card in order to

avoid zero-frequency modes.

ANGLES
* i ] k ktheta dtheta (%)
2 0 5 37. 10.

1 2 3 2590. 10.
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Output files

All 0]2 values in the output files are given in units of A2, all frequencies are in units

of THz, and all reduced masses are in atomic units.

The output files from a SIGEM calculation include

e s2_em.dat which contains o for each scattering path in paths.dat (see Fig. A.5¢

and Fig. A.7c). Here N_at is the number of atoms in the cluster for which 0]278
are calculated, ipathis the current scattering path index, nlegis the number of
the scattering legs in the path, sig2 is the corresponding value of ¢, mu_ipath
is projected reduced mass for the path (Eq. 2.11), and checkO0 is equal to a
percentage error in the VDOS normalization to 1 and is a rough indicator of
how “good” the VDOS is (if this number is above 10% then there might be
something wrong with the spectrum, e.g. part of the spectrum is being cut off
at hight frequencies because the w,,,, value is too low; it will also be large if a

zero-frequency mode was eliminated by dosfit).

e prdenNNNN.dat which contains projected VDOS for selected scattering paths

(as indicated by the PRINT card).

The SIGRM calculation produces the following output files.

o s2_rm2.dat which contains values of ¢7 calculated via the RM using the second

tier approximation for each scattering path in paths.dat (see Fig. A.5b and
Fig. A.5b). Here w1l and w2 are the second tier frequencies, and Al and A2 are
the corresponding weight factors (see Sec. 3.1). The rest of the parameters are

the same as in s2_em.dat.

s2_rml1.dat which contains values of 0]2 calculated via the RM using the first
tier approximation (see Fig. A.5a and Fig. A.ba). Here we= aé/z = (Q,;|D|Q;)

is the first tier frequency (see Sec. 3.1).
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A.4 Local variables, their dimensions, and descriptions

In this section we present information which is of limited value to regular users but
could be useful to someone who would like to modify the code.

There are five variables which are passed to the subroutines SIGEM and SIGRM
through the argument list. These include temperature tk, index of the current path
ipath, maximum number of the scattering legs nlegx, number of the scattering legs
in the current path nleg, and coordinates of atoms involved in the current scattering
path rat. All frequency variables used within the codes are in units of w0 which is
equal to a square root of the second moment of the dynamical matrix for a bond
between the absorber and its first nearest neighbor with which it has a non-zero
central interaction (i.e. natural frequency of the first nearest neighbor bond). All
time variables are in units of 1/w0.

Parameters used to dimension local arrays consist of maximum number of atoms
in the cluster natxdw (it is typically equal to 200), maximum number of scattering
legs in a path nlegx (passed through the argument list), and maximum number of
the frequency grid points nwx (set to 700).

Primary local arrays used in the codes include

e arrays used in both subroutines, SIGEM and SIGRM:

rat1(3,natxdw) cartesian coordinates of all atoms in the cluster

iz(natxdw) atomic numbers of all atoms in the cluster

dm(3,3,natxdw,natxdw) matrix elements D, g(l,m) of the cartesian dy-
namical matrix

rnn(3,natxdw,natxdw) cartesian components Rj of the directing unit
vectors between atoms [ and m

nnl (natxdw,natxdw) list of atoms for which tensor D(I,m) has non-zero

elements (used to avoid summation of 0’s)
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rat(3,0:nlegx) coordinates of atoms in the current scattering
path j
nconv(0:nlegx) converts the index of the atom in the path to its

index in the list of all atoms in the cluster

q0(3,natxdw) initial state vector |0) = |Q;)

e arrays used only in the subroutine SIGEM:

gr(nwx) VDOS pj(w)

w(nwx) frequency grid from 0 to w4,
uu(3,natxdw) displacement state |Q;())

up (3,natxdw) displacement state |Q;(t — At))
££(3,natxdw) acceleration d*|Q;(t))/d*t

e arrays used only in the subroutine SIGRM:

q1(3,natxdw) state vector |1) = D|Q)

nql(natxdw) list of atoms involved in |1)

A.5 Example input and output files

Example input file for a 177-atom cluster of Cu crystal is shown in Fig. A.4. Here
only a single central force constant between the first nearest neighbors was taken
into account (Sec. 2.5.1). The corresponding output files from the SIGRM and SIGEM
runs for several scattering paths are presented in Fig. A.5. Similar input files can be
constructed for other fcc structures, e.g. Pt, Al, ete.

Figure A.6 shows example input file for a 147-atom cluster of c-Ge crystal. The
force constants used here were fitted to the phonon dispersion curves [38]. The corre-
sponding output files are presented in Fig. A.7. Similar input files can be constructed

for other diamond-type lattices, e.g. Si, C, ete.



101

res wmax  dosfit acut
VDOS 0.03 0.5 1
PRINT 3
STRETCHES
i ] K_ij dR_ij ()
0 1 27.9 2.

Figure A.4: Sample spring.inp file for Cu crystal.



a) Cu metal fcc a=3.61

Al
0.566
0.438
0.651

0.564

A2
0.434
0.562
0.349

0.436

102

temperature = 300.00 N_at = 177
ipath nleg sig2 mu_ipath w_e
1 2 0.00635 31.775 36.36
2 2 0.00784 31.775 32.52
3 3 0.00654 28.244 38.13
4 3 0.00732 28.793 35.53
b) Cu metal fcc a=3.61
temperature = 300.00 N_at = 177
ipath nleg sig2 mu_ipath w_1 w_2
1 2 0.00745 31.775 41.89 27 .51
2 2 0.00996 31.775 40.70 24 .31
3 3 0.00737 28.244 42 .24 28.93
4 3 0.00898 28.793 41.52 25.77
¢) Cu metal fcc a=3.61
temperature = 300.00 N_at = 177
ipath nleg sig2 mu_ipath check0(%)
1 2 0.00821 31.775 .20
2 2 0.01208 31.775 .23
3 3 0.00787 28.244 .24
4 3 0.01038 28.793 .24
Figure A.5: Sample output files for Cu crystal at 300 K: a) s2_rml.dat, b)

s2-rm2.dat, and c) s2_em.dat.
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res wmax dosfit acut

VDOS 0.02 0.7 0. 3.
PRINT 6
STRETCHES
* i j K_ij dR_ij (%)
0 1 103.58 2.
0 5 5.81 2.
0 20 -1.08 2.
0 30 -0.30 2.
ANGLES
* i ] k ktheta dtheta (%)
1 0 2 31.45 2.

Figure A.6: Sample spring.inp file for for Ge crystal.



Al
0.844
0.571
0.707
0.717

A2
0.156
0.429
0.293

0.283

104

a) Ge diamond structure
temperature = 300.00 N_at = 147
ipath nleg sig2 mu_ipath w_e
1 2 0.00304 36.295 50.62
2 2 0.00426 36.295 42.02
3 3 0.00377 33.765 46.73
4 3 0.00377 33.765 46.73
b) Ge diamond structure
temperature = 300.00 N_at = 147
ipath nleg sig2 mu_ipath w_1 w_2
1 2 0.00324 36.295 52.79 36.77
2 2 0.00593 36.295 50.43 27.09
3 3 0.00450 33.765 51.69 31.72
4 3 0.00452 33.765 51.58 31.26
c¢) Ge diamond structure
temperature = 300.00 N_at = 147
ipath nleg sig2 mu_ipath check0(%)
1 2 0.00340 36.295 .67
2 2 0.00911 36.295 .49
3 3 0.00538 33.765 .55
4 3 0.00626 33.765 .55
Figure A.7: Sample output files for Ge crystal at 300 K: a) s2.rmi.dat, b)

s2-rm2.dat, and c) s2_em.dat.



Appendix B

TABLE OF SELECTED PARAMETERS USED IN THE
UFF MODEL

(see text in Section 2.4 for details)

Atom types in Table B.1 have the following notation. The first two characters corre-
spond to the chemical symbol (an underscore is used in place of the second character
if the atomic symbol consists of only one letter, e.g. 1_1is iodine, Cl is chlorine). The
third character denotes hybridization (geometry): 1=linear, 2=triginal, R=resonant,
3=tetrahedral, 4=square planar, 5=trigonal bipyramidal, 6=octahedral. The forth
and fifth characters indicate formal oxidation state (e.g. Rh6+3 is an octahedral
rhodium formally in the +3 oxidation state as in R,h(NHg)g-l— and other alternate
parameters (e.g. H._b corresponds to a bridging hydrogen as in ByHg, O-3_z is an
oxigen suited for framework oxygens of a zeolite lattice, P_3_q is a tetrahedral four-
coordinate phosphorus used to describe organometallic coordinated phosphines as in
(PhsP)yPtCly). All parameters and notations in the table are taken from the original
paper by Rappe et al. [66].

Table B.1: Values of selected UFF model parameters for different atoms.

atom type r; (A) 0y (rad)  ZF

H 0.354 180.0  0.712
H-b 0.460 83.5 0.712

continued on next page
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continued from previous page

atom type r; (A) 6y (rad)  Z7
He4 + 4 0.849 90.0 0.098
Li 1.336 180.0  1.026
Be3 + 2 1.074  109.47  1.565
B3 0.838  109.47 1.755
B2 0.828 120.0  1.755
C3 0.757  109.47 1.912
CR 0.729 120.0  1.912
C2 0.732 120.0  1.912
C.1 0.706 180.0  1.912
N_3 0.700 106.7  2.544
N_R 0.699 120.0  2.544
N_2 0.685 111.2  2.544
N_1 0.656 180.0  2.544
03 0.658  104.51  2.300
03z 0.528 146.0  2.300
OR 0.680 110.0  2.300
02 0.634  120.0  2.300
0.1 0.639 180.0  2.300
F_ 0.668 180.0  1.735
Ned + 4 0.920 90.0 0.194
Na 1.539 180.0  1.081
Mg3 + 2 1.421  109.47 1.787
Al3 1.244  109.47  1.792
continued on next page
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continued from previous page

atom type r; (A) 6y (rad)  Z7

K3

513 1.117  109.47  2.323
P3+43 1.101 93.8 2.863
P3+5 1.056  109.47  2.863
P3+q 1.056  109.47  2.863
S342 1.064 92.1 2.703
S34+4 1.049  103.20 2.703
S346 1.027  109.47  2.703

S_R 1.077 92.2 2.703
S22 0.854 120.0  2.703
Cl 1.044 180.0  2.348
Ard +4 1.032 90.0 0.300
K_ 1.953 180.0  1.165

Cab + 2 1.761 90.0 2.141
Sc3 43 1.513  109.47  2.592
Ti3 +4 1.412  109.47  2.639
Ti6 + 4 1.412 90.0 2.659
V345 1.402  109.47  2.679
Cr6 + 3 1.345 90.0 2.463
Mn6 + 2 1.382 90.0 2.43
Fe3 42 1.270 10947 243
Fe6 + 2 1.335 90.0 2.43
Cob + 3 1.241 90.0 2.43
Ni4 + 2 1.164 90.0 2.43

continued on next page
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continued from previous page

atom type r; (A) 6y (rad)  Z7

K3

Cu3 41 1.302  109.47 1.756
/n3 42 1.193  109.47 1.308
Ga3 +3 1.260  109.47 1.821
Ge3 1.197  109.47  2.789
As3 +3 1.211 92.1 2.864
Se3 + 2 1.190 90.6 2.764

Br 1.192 180.0  2.519
Krd +4 1.147 90.0 0.452
Rb 2.260 180.0  1.592

Sr6 + 2 2.052 90.0 2.449
Y3+3 1.698 10947  3.257
Zr3 +4 1.564  109.47  3.667
Nb3 +5 1.473  109.47  3.618
Mo6 + 6 1.467 90.0 3.40
Mo3 + 6 1.484 10947  3.40
Tcb+5 1.322 90.0 3.40
Ru6 + 2 1.478 90.0 3.40
Rh6 + 3 1.332 90.0 3.508
Pd4 +2 1.338 90.0 3.21
Agl +1 1.386 180.0  1.956
Cd3 + 2 1.403 10947 1.6
In3 +3 1.459  109.47  2.07
Sn3 1.398 10947 2.961

continued on next page
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continued from previous page

atom type r; (A) 6y (rad)  Z7

K3

Sb3 +3 1.407 91.6 2.704
Te3 + 2 1.386 90.25  2.882

I 1.382 180.0 2.65
Xed 4+ 4 1.267 90.0 0.556
Cs 2.570 180.0  1.573

Ba6 + 2 2.277 90.0 2.727
La3 4 3 1.943 10947  3.30
Ceb + 3 1.841 90.0 3.30
Pr6 + 3 1.823 90.0 3.30
Nd6 + 3 1.816 90.0 3.30
Pm6 + 3 1.801 90.0 3.30
Smé6 + 3 1.780 90.0 3.30
Eu6 + 3 1.771 90.0 3.30
Gd6 + 3 1.735 90.0 3.30
Th6 + 3 1.732 90.0 3.30
Dy6 + 3 1.710 90.0 3.30
Ho6 + 3 1.696 90.0 3.416
Er6 + 3 1.673 90.0 3.30
Tm6 + 3 1.660 90.0 3.30
Yb6 + 3 1.637 90.0 2.618
Lu6 + 3 1.671 90.0 3.271
Hf3 + 4 1.611  109.47 3.921
Ta3 45 1.511  109.47 4.075

continued on next page
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continued from previous page

atom type r; (A) 6y (rad)  Z7

K3

W6 46 1.392 90.0 3.70
W3 +14 1.526 10947  3.70
W346 1.380 10947  3.70
Re6 + 5 1.372 90.0 3.70
Re3 +7 1.314 10947  3.70
Os6 + 6 1.372 90.0 3.70
Ir6 4 3 1.371 90.0 3.731
Pt4 4 2 1.364 90.0 3.382
Aud 43 1.262 90.0 2.625
Hgl + 2 1.340 180.0 1.75
T13 + 3 1.518 120.0  2.068
Pb3 1.459  109.47  2.846
Bi3 +3 1.512 90.0 2.470
Po3 + 2 1.50 90.0 2.33

At 1.545 180.0 2.24
Rn4 + 4 1.420 90.0 0.583
Fr 2.880 180.0  1.847

Ra6 + 2 2.512 90.0 2.92
Ac6+3 1.983 90.0 3.90
Th6 + 4 1.721 90.0 4.202
Pa6 + 4 1.711 90.0 3.90
U6 +4 1.684 90.0 3.90
Np6 + 4 1.666 90.0 3.90

continued on next page




continued from previous page
atom type r; (A) 6 (rad)  Z7
Pu6 + 4 1.657 90.0 3.90
Am6 + 4 1.660 90.0 3.90
Cm6+ 3 1.801 90.0 3.90
Bk6 + 3 1.761 90.0 3.90
Cf6 + 3 1.750 90.0 3.90
Es6 4 3 1.724 90.0 3.90
Fm6 + 3 1.712 90.0 3.90
Md6 + 3 1.689 90.0 3.90
No6 + 3 1.679 90.0 3.90
Lw6 + 3 1.698 90.0 3.90

For more details on these parameters see the original paper [66].
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